Morphology and Rheology of Immiscible Polymer Blends under Electric Fields

H. Orihara¹, Y. Nishimoto¹, K. Aida¹, Y. H. Na¹, T. Nagaya²

¹Hokkaido University, ² Oita University

Immiscible polymer blends

Rheology (Morphology

Close relationship

Doi and Ohta, 1991

Constitutive equations

Interface tensor

Interface area density

$$\boldsymbol{q}_{\alpha\beta} = \frac{1}{V} \int_{S} \left(n_{\alpha} n_{\beta} - \frac{1}{3} \delta_{\alpha\beta} \right) dS \qquad Q = \frac{1}{V} \int_{S} dS$$

V: system volume n: unit normal vector

Excess stress from Interfacial tension(Batchelor, Doi, Onuki)

 $-\Gamma q_{\alpha\beta}$ Γ : interfacial tension

Experimental tests (Takahashi et al.)

Effect of electric fields

Immiscible polymer blend electro-rheological (ER) fluid (Inoue et al. 1995)

ER effect is due to morphological change.

Tajiri, K., K. Ohta, T. Nagaya, H. Orihara, Y. Ishibashi, M. Doi and M. Inoue, J. Rheol. **41**, 335-341 (1997). Kimura, H., K. Aikawa, Y. Masubuchi, J. Takimoto, K. Koyama and K. Minagawa, Rheol. Acta **37** 54-60 (1998).

3D observations!

Outline

Subjected to a step electric field without shear flow

1. Coalescence of droplets

2. Shear modulus of columnar structure

Subjected to a step electric field with shear flow

3. Interface tensor

- 4. Separation of viscous, interfacial and electric stresses
- 5. Relationship between excess stress and interface tensor

Gap: 200mm, Diameter: 35 mm

Blend of LCP and PIB(Polyisobutylene) LCP: $\varepsilon_1 = 15$, $\sigma_1 = 8 \times 10^{-9} \Omega^{-1} m^{-1}$ PIB: $\varepsilon_2 = 2$, $\sigma_2 < 10^{-11} \Omega^{-1} m^{-1}$

Coalescence of droplets and column formation without shear flow

Blend: LCP(65 Pa s)/PIB(7.8 Pa s) at 25°C Preshear of 200 s⁻¹ for 20 min

Application of ac electric field (512 Hz) without shear flow

LCP:PIB=1:6 (*φ* =0.14)

Movies (8 times as fast)

$$2 \text{ kV}_{amp}/mm$$

 $5 \ kV_{amp}/mm$

Scaling property

Assuming that all the droplets keep spherical shape,

 $r = r_0 f\left(\frac{\varepsilon_0 E_{\text{rms}}^2 t}{\eta}\right)$ r(= a = c): radius η : viscosity of PIB

Scaling property holds ?

Growth kinetics on the basis of hierarchical model

Volume fraction dependence

Numerical calculation

Storage Shear Modulus of Columnar Structure

100 sec later after applying an ac electric field with an amplitude of 5kV/mm and a frequency of 2Hz.

Emergence of elasticity

Dependence of G' on electric field strength

 $\omega = 10 \text{ rad/s}$ (oscillation) 400 2Hz 512Hz 2Hz(theory) 512Hz(theory) 300 G' (Pa) 10 200 100 0Ľ 20 60 80 100 0 40 $E_0^{2} ((kV/mm)^{2})$

Electric stress on slant column

$$z = d$$

$$z = 0$$

$$G'(0) = \pi na\Gamma + 2nad(\varepsilon_1 - \varepsilon_2)E_0^2$$

$$\times \operatorname{Re}\left[\sum_{m=1}^{\infty} \frac{[1 - (-1)^m](\tilde{\varepsilon}_1 - \tilde{\varepsilon}_2)/m^3\pi^2}{\tilde{\varepsilon}_1 I_1'(m\pi a/d)/I_1(m\pi a/d) - \tilde{\varepsilon}_2 K_1'(m\pi a/d)/K_1(m\pi a/d)}\right]$$
Interfacial stress Electric stress
$$\tilde{\varepsilon}_j = \varepsilon_j + \frac{\sigma_j}{i2\pi f}$$

$$f: \text{ frequency of ac electric field}$$

- *n*: column density Γ : interfacial tension
- $I_1(x), K_1(x)$: modified Bessel function

E dependence

fdependence

Transient process subjected to a step electric field with shear flow

3D images in the transient process

Movie in the transient process

Real time speed

Interface tensor $q_{\alpha\beta}$

Time evolution of interface tensor

Mapping from structure to ellipsoid

Structure

Ellipsoid

 σ : total shear stress

$$\sigma = \sigma_{\text{viscous}} + \sigma_{\text{interfacial}} + \sigma_{\text{electric}}$$

$$\sigma_{\text{viscous}} = \eta \dot{\gamma}$$
 η : viscosity, $\dot{\gamma}$: shear rate

 $\sigma_{\text{interfacial}} = -\Gamma q_{zx}$ Γ : interfacial tenson (Batchelor 1970, Doi 1987, Onuki 1987)

 $\sigma_{\text{electric}} ?$ Maxwell stress tensor $T_{\alpha\beta} = \varepsilon \left(E_{\alpha} E_{\beta} - \frac{1}{2} \delta_{\alpha\beta} E^{2} \right)$ $\sigma_{\text{electric}} \propto E^{2} \qquad \sigma_{\text{viscous}} = \eta \dot{\gamma}$ $E \rightarrow 0 \Rightarrow \sigma_{\text{electric}} \rightarrow 0 \qquad \dot{\gamma} \rightarrow 0 \Rightarrow \sigma_{\text{viscous}} \rightarrow 0$ \downarrow

Separation of σ_{electric} , $\sigma_{\text{interfacial}}$, σ_{viscous}

Separation of σ_{electric} , $\sigma_{\text{interfacial}}$, σ_{viscous}

Electric stress

Electric torque on ellipsoid

$$\boldsymbol{K}^{(e)} = \boldsymbol{p} \times \boldsymbol{E}$$

Electric stress (Halsey et al., 1992)

$$\sigma_{electric} = -K_y^{(e)} / v \cdot \phi$$

- v: ellipsoid volume
- ϕ : volume fraction

p: dipole moment

$$\sigma_{electric} = \varepsilon_{2} \frac{(\varepsilon_{1} - \varepsilon_{2})(n^{(a)} - n^{(c)})}{\{(\varepsilon_{1} - \varepsilon_{2})n^{(a)} + \varepsilon_{2}\}\{(\varepsilon_{1} - \varepsilon_{2})n^{(c)} + \varepsilon_{2}\}} \phi E^{2} \sin \alpha \cos \alpha$$

$$n^{(a)}, n^{(c)} : \text{ depolarization factor}$$

$$\int a \sim c$$

$$\sigma_{electric} = -9\varepsilon_{2} \frac{(\varepsilon_{1} - \varepsilon_{2})^{2}}{(\varepsilon_{1} + 2\varepsilon_{2})^{2}} E^{2} \phi \left(n^{(c)} - n^{(a)}\right) \sin \alpha \cos \alpha$$

$$\int \text{approximation}$$

$$\sigma_{electric} = -9\varepsilon_{2} \frac{(\varepsilon_{1} - \varepsilon_{2})^{2}}{(\varepsilon_{1} + 2\varepsilon_{2})^{2}} E^{2} \phi q_{zx}' \qquad q_{zx}' = \frac{q_{zx}}{Q} = \frac{\int_{S} n_{z} n_{x} dS}{\int_{S} dS} = \langle n_{z} n_{x} \rangle$$

$$\sigma_{electric} = -9\varepsilon_2 \frac{\left(\varepsilon_1 - \varepsilon_2\right)^2}{\left(\varepsilon_1 + 2\varepsilon_2\right)^2} E^2 \phi q_{zx}'$$

$$\int q_{zx}' = \frac{q_{zx}}{Q} = \frac{q_{zx}}{S/V}$$

$$\sigma_{electric} = -\Gamma_{electric} q_{zx}$$

$$\Gamma_{electric} = 9\varepsilon_2 \frac{\left(\varepsilon_1 - \varepsilon_2\right)^2}{\left(\varepsilon_1 + 2\varepsilon_2\right)^2} E^2 V_d / S$$

 V_d : total volume of droplets (LCP)

Relaxation process to droplets after removing *E*

Real time speed

Real time speed

Removal of both electric field and shear flow

Real time speed

Real time speed

Summary

Subjected to a step electric field without shear flow

1. Coalescence of droplets in electric filed

Hierarchical model is applicable

- Exponential growthNon-exponential growthSphereSpheroid
- Shear modulus of columnar structure
 Emergence of elasticity under electric fields
 Dependences of field strength and frequency

Subjected to a step electric field under shear flow

3. 3D images

4. Separation of viscous, interfacial and electric stresses

 $\sigma = \sigma_{\text{viscous}} + \sigma_{\text{interfacial}} + \sigma_{\text{electric}}$

5. Interface tensor

$$\sigma_{\text{interfacial}} = -\Gamma q_{zx}$$

$$\sigma_{\text{electric}} = -9\varepsilon_2 \frac{\left(\varepsilon_1 - \varepsilon_2\right)^2}{\left(\varepsilon_1 + 2\varepsilon_2\right)^2} E^2 \phi q_{zx} \,' \left(= q_{zx} \,/ \, Q\right)$$

Future subject

Can Doi-Ohta theory describe the change from droplet-dispersed structure to network one?

Constitutive equations of $q_{\alpha\beta}$, Q, \overline{K} ???

Different viscosities

 $\sigma = \sigma_{\text{viscous}} + \sigma_{\text{interfacial}} + \sigma_{\text{electric}} + \sigma_{\text{interface velocity}}$

$$\sigma_{\text{interface velocity}} = -\frac{(\eta_m - \eta_d)}{V} \int_S (u_z n_x + u_x n_z) dS$$
$$\eta_m: \text{ viscosity of matrix}$$

- η_d : viscosity of droplet
- *u*: local velocity on interface

(Batchelor, 1970)

Calculation of interface tensor

