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Introduction

Monodomain Side-Chain Nematic Elastomers

Experiment:
linear anisotropic elasticity
nonlinear stress-strain plateau for perpendicular stretching
accompanied by a complete director reorientation

Description and Interpretation:
effective linear modulus and director relaxation under pre-strain?
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Introduction

Results

Stretching a mono-domain nematic elastomer perpendicularly
the resulting elastic plateau at finite strains

comes with a vanishing effective linear modulus and a divergent
director reorientability at its beginning and end (soft mode)
this bifurcation-type behavior is a genuine manifestation of the role
of nonlinear relative rotations
it requires two independent preferred directions and discriminates
nematic LSCEs from simple anisotropic solids

and
this soft mode behavior is not related to the proposed
Nambu-Goldstone mode ("soft-elasticity"), nor is any closeness to
an ideal soft-elastic behavior ("semi-soft elasticity") required:
the described scenario is found also for cases, where the plateau
starts at very large applied strains
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Elasticity Including Nonlinear Relative Rotations Energetics

Elastic and Orientational Degrees of Freedom

Network: daα = Rαj Ξjk dr k

Eulerian strain tensor

εik = 1
2 [δik − ΞijΞik ]

= 1
2 [δik − (∂aα/∂rk )(∂aα/∂ri)]

= 1
2 [∂ui/∂rk + ∂uk/∂ri − (∂uj/∂ri)(∂uj/∂rk )]

Nematic: Director

n̂ = S · n̂0 and textures (∇jni )
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Elasticity Including Nonlinear Relative Rotations Energetics

Relative Rotations

Coupling:

rotations of the anisotropic network n̂nw = R−1 · n̂nw
0

(there is no closed expression for R−1 in terms of ∂uj/∂ri )

rotations of the nematic director n̂ = S · n̂0

relative rotations (projections)1

Ω̃ ≡ n̂ − γ n̂nw

Ω̃nw ≡ −n̂nw + γ n̂

with γ ≡ n̂ · n̂nw resulting in Ω̃ · n̂nw = 0 = Ω̃nw · n̂

1
A. M. Menzel, H. Pleiner and H. R. Brand, J. Chem. Phys. 126 (2007) 234901.
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Elasticity Including Nonlinear Relative Rotations Energetics

Free Energy

Power series expansion in εij , Ω̃i , Ω̃nw
j , and ni and all its couplings up

to some order
here: simplified model (analytical treatment) - elastic nonlinearities
neglected

F = c1 εijεij + 1
2c2 εii εjj + . . .

+
1
2

D1 Ω̃iΩ̃i + D(2)
1 (Ω̃iΩ̃i)

2 + D(3)
1 (Ω̃iΩ̃i)

3

+ D2 niεijΩ̃j + Dnw
2 nnw

i εijΩ̃
nw
j

+ D(2)
2 niεijεjk Ω̃k + Dnw ,(2)

2 nnw
i εijεjk Ω̃nw

k

− 1
2εa (niEi)

2

reduces in linear order to de Gennes’ expression
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Plateau for Perpendicular Stretch - Eulerian
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Fig.1: Stress-strain data measured
by Urayama et al.a transferred to the
representation in terms of the stretch
amplitude A = ∂uz/∂z and dF/dA.

a
K. Urayama, R. Mashita, I. Kobayashi, and

T. Takigawa, Macromol. 40 (2007) 7665.
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Fig.2: Same stress-strain data as in Fig.1
with nonlinear purely elastic contributions
by the network of polymer backbones
subtracted. The line is the result of the
theoretical model a

a
A. Menzel, H.P., and H.R. Brand, J. Appl. Phys.

105 (2009) 013503.
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Plateau for Perpendicular Stretch - Lagrangian

Fig.3: The same stress-strain data points of Urayama et al. and the theoretical line obtained by
the present model (with the nonlinear elastic experimental contributions added) – now in the
representation of the nominal stress as a function of the true strain.
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Director Reorientation

A

ϑ [◦]

Fig.4: Angle ϑ between the director orientation and the x axis under the influence of an
externally imposed strain A for various initial director orientations ϑ0 = ϑ(A = 0), e.g. 0◦, 0.1◦,
2◦, 10◦, . . . 80◦, and 89.9◦, respectively. For ϑ0 = 0◦ (perpendicular stretch) a singular
threshold behavior is found.
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Forward bifurcation

Fig.4a: ϑ = ϑ(A); same as Fig.4
with the area around Ac enlarged

In the vicinity of Ac an amplitude equation can be derived analytically for the
case ϑ0 = 0

0 = ϑ
{

a(Ac − A) + gϑ2} +O(ϑ5).

−→ forward bifurcation with exchange of stability between
ϑ = 0 for A < Ac and ϑ ∼

√
A− Ac for A > Ac

for ϑ0 > 0 an imperfect bifurcation is obtained
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Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Soft mode

a forward bifurcation is similar to a second order phase transition
an (effective) susceptibility vanishes at the phase transition (at
onset)
giving rise to diverging fluctuations (soft mode)
in contrast to Nambu-Goldstone modes, where a susceptibility is
identically zero throughout the whole phase due to symmetry
reasons
example: director rotations in a smectic C phase:
azimuthal (on the cone) Nambu-Goldstone mode
tilt angle: soft only at the smectic A to C transition

for imperfect bifurcations no diverging fluctuations

H.R. Brand (Universität Bayreuth) Nonlinear Stress - Strain Behavior Tokyo, August 9, 2010 12 / 27



Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Soft mode

a forward bifurcation is similar to a second order phase transition
an (effective) susceptibility vanishes at the phase transition (at
onset)
giving rise to diverging fluctuations (soft mode)
in contrast to Nambu-Goldstone modes, where a susceptibility is
identically zero throughout the whole phase due to symmetry
reasons
example: director rotations in a smectic C phase:
azimuthal (on the cone) Nambu-Goldstone mode
tilt angle: soft only at the smectic A to C transition

for imperfect bifurcations no diverging fluctuations

H.R. Brand (Universität Bayreuth) Nonlinear Stress - Strain Behavior Tokyo, August 9, 2010 12 / 27



Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Soft mode

a forward bifurcation is similar to a second order phase transition
an (effective) susceptibility vanishes at the phase transition (at
onset)
giving rise to diverging fluctuations (soft mode)
in contrast to Nambu-Goldstone modes, where a susceptibility is
identically zero throughout the whole phase due to symmetry
reasons
example: director rotations in a smectic C phase:
azimuthal (on the cone) Nambu-Goldstone mode
tilt angle: soft only at the smectic A to C transition

for imperfect bifurcations no diverging fluctuations

H.R. Brand (Universität Bayreuth) Nonlinear Stress - Strain Behavior Tokyo, August 9, 2010 12 / 27



Elasticity Including Nonlinear Relative Rotations Perpendicular Stretching

Soft mode

a forward bifurcation is similar to a second order phase transition
an (effective) susceptibility vanishes at the phase transition (at
onset)
giving rise to diverging fluctuations (soft mode)
in contrast to Nambu-Goldstone modes, where a susceptibility is
identically zero throughout the whole phase due to symmetry
reasons
example: director rotations in a smectic C phase:
azimuthal (on the cone) Nambu-Goldstone mode
tilt angle: soft only at the smectic A to C transition

for imperfect bifurcations no diverging fluctuations

H.R. Brand (Universität Bayreuth) Nonlinear Stress - Strain Behavior Tokyo, August 9, 2010 12 / 27



Linear Response under Pre-Strain Effective Linear Shear Modulus

Homeotropic geometry

For a given prestrain A – that results in a given compression B, shear
S, and tilt angle ϑ

S

n̂0

n̂
ϑ

ẑ

x̂

ŷ

E‖x̂

E‖ẑ

A
BδS

Fig.5: Homeotropic geometry

1 a small shear δS is added and the effective shear modulus is
calculated

2 an external field is applied (‖ and ⊥ to n̂0) and the reorientability
of the director is calculated
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Linear Response under Pre-Strain Effective Linear Shear Modulus

Effective linear shear modulus
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Fig.6: Effective shear modulus ∂2F/∂(δS)2|δS=0 as a function of the prestretching amplitude A.

Here, the system is prestretched in a direction perfectly perpendicular to the initial director

orientation n̂0. The zeroes of the effective shear modulus at the beginning and end of the plateau

denote diverging fluctuations.
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Linear Response under Pre-Strain Director Reorientability

Director reorientability
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Fig.7: Reorientability ∂2ϑ/∂E2|E=0 as
a function of the prestretching
amplitude A, where the divergencies
take place at the beginning and end
of the plateau (E ⊥ n̂0)
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Fig.8: Same theoretical data fitted in
the region ϑ & 0 by a curve
∝ (A− Ac)

x with x ≈ −1/2, thus
clearly indicating a soft mode
behavior in mean field description
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Linear Response under Pre-Strain Director Reorientability

Oblique Pre-Strain
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Fig.9: Effective shear modulus ∂2F/∂(δS)2|δS=0 (left) and reorientability ∂2ϑ/∂E2|E=0 (right)

as a function of the prestretching amplitude A. Here, the initial director orientation n̂0 slightly

deviates from the perfectly perpendicular orientation by an angle of 0.01 rad (0.57◦).

imperfect bifurcation: no divergent fluctuations2

2
A. Petelin and M. Čopič, Phys. Rev. Lett. 103, 077801 (2009); and presentations at the European Conference on Liquid

Crystals, Colmar, April 2009
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Conclusions

Remarks

the fluctuations at the bifurcation do not diverge (the effective linear
modulus remains non-zero)

for an oblique prestretch
due to boundary induced director inhomogeneities (necking)
due to macroscopic material inhomogeneities
if the fluctuations are treated nonlinearly

there is no bifurcation (no diverging fluctuations)
in the planar geometry (the small shear added is not in the
director reorientation plane)
for an external field in y direction (perpendicular to the director
reorientation plane)
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Conclusions

Semisoftness

the general scenario – elastic plateau with vanishing effective
linear modulus at its beginning and end – has also been described
by other methods3

often, it is connected to semi-softness, where a small parameter α
describes the (small) deviation from ideal softness;4

the plateau starts at λ1 ≈ 1 + α and the slope of the plateau is
3µα (cf. Chaps. 7.4 and 7.5 of Ref. 4)
however, the smallness of Ac ≈ 0.1 (corresponding to α ≈ 0.1) is
not a necessary condition for the soft mode behavior at the
beginning and end of the plateau

3
J. S. Biggins, E. M. Terentjev, and M. Warner, Phys. Rev. E 78 (2008) 041704
and F. F. Ye and T. C. Lubensky, J. Phys. Chem. B 113 (2009) 3853

4
M. Warner and E.M. Terentjev, Liquid Crystal Elastomers, Clarendon Press, Oxford (2003)
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Conclusions

High Plateau

Fig.10: In this case the plateau starts at a rather large pre-strain Ac ≈ 0.56
(or λ ≈ 2.3) and ends at A ≈ 0.76 (or λ ≈ 4.2)
– the scenario is the same as for very small Ac .
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Conclusions

Summary

the scenario of an elastic plateau at finite perpendicular stretching,
with a vanishing effective linear modulus and a divergent director
reorientability at its beginning and end (soft mode), is a genuine
manifestation of an instability due to nonlinear relative rotations;
it requires two independent preferred directions and discriminates
these systems from simple anisotropic solids;
there is no need for a small parameter nor for the closeness to an
ideal soft-elastic behavior (Nambu-Goldstone or almost
Nambu-Goldstone mode)

– the soft mode scenario can happen, even when the plateau
starts at very high strains
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Appendices Appendix A: Stress-Strain Definition

Lagrange description

Comparing the initial dimension l0 to the actual dimension (in the direction of
the external force Fext ), the ratio

λ =
l
l0

(1)

is taken as a measure of the induced strain.
Sometimes, the so called true strain ε = ln(λ) is taken as a variable.
Stresses are recorded either as true stress

σext =
Fext

lx ly
(2)

or as nominal stress
σN

ext =
Fext

lx,0ly,0
, (3)

From the experimental point of view the initial dimension l0 is considered to
be constant and the current sample dimension l is changed.
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Appendices Appendix A: Stress-Strain Definition

Eulerian description

In the hydrodynamic (Eulerian) picture the current dimension of the sample l
is considered to be constant, and what changes is the initial dimension l0.
For the displacement field uz = Az (or lz − lz,0 = Alz) the strain is

λ =
1

1− A
. (4)

and the stresses are

σext ≡
Fext

lx ly
=

dF
dA

, (5)

σN
ext ≡

Fext

lx,0ly,0
= (1− A)

dF
dA

. (6)

Here, the expressions on the left of Eqs. (5) and (6) are given as functions of
λ, the expressions on the right as functions of A.
The connection between both follows from Eq. (4).
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Appendices Appendix B: Procedures

Constrained equilibrium

As an ansatz we use for the
displacement fields

uz = Az + Sx , (7)
ux = Bx (8)
uy = Cy . (9)

and for the director orientation

n̂ = (cos ϑ, 0, sin ϑ) (10)

S

n̂0

n̂
ϑ

ẑ

x̂

ŷ

E‖x̂

E‖ẑ

A
BδS

Fig.5: homeotropic geometry

For a given initial orientation ϑ0 and external stretch A,
the values S(A), B(A), and ϑ(A) follow from the equilibrium conditions
∂F/∂S = 0, ∂F/∂B = 0, and ∂F/∂ϑ = 0
(the compression C follows from the incompressibility condition).
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Appendices Appendix B: Procedures

Shear and compression
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Fig.11: The shear S(A) and the compression B(A) as a function of the pre-strain amplitude A.
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Appendices Appendix B: Procedures

Effective linear modulus

For each given pre-strain A a small shear δS is added,

uz = Az + [S(A) + δS]x (11)

and the free energy (including δS) is again minimized w.r.t. ϑ
and then calculated to lowest order in δS

FA = 1
2ceff (A)(δS)2 +O(δS)3 (12)

The effective linear modulus ceff (A) = ∂2FA/∂(δS)2 |δS=0 is shown in
Figs. 6 and 9.
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Appendices Appendix B: Procedures

Orientability

For given external field E in the x-z plane and a given pre-strain A, the
system of constrained equilibrium conditions ∂F/∂ϑ = ∂F/∂B = ∂F/∂S = 0
is solved, resulting in F = F (E , A).
For each value of A, there is ∂ϑ/∂E |E=0 = 0 due to stability reasons.

Therefore, we take the second
derivative ∂2ϑ/∂E2|E=0 as a
measure for the reorientability of
the director n̂ in an external field for
a given stretching amplitude A. In
Fig.7 this reorientability is shown for
E ⊥ n̂0, while for E ‖ n̂0 the sign of
it is reversed. The case Ex = Ez is
shown on the right

H.R. Brand (Universität Bayreuth) Nonlinear Stress - Strain Behavior Tokyo, August 9, 2010 26 / 27



Appendices Appendix B: Procedures

Divergence of the orientability

the coefficients of the amplitude equation close to the threshold
(E2 = E2

x,z)
0 = ϑ

{
a(Ac − A) + gϑ2} +O(ϑ5). (13)

generally acquire field contributions ∼ E2 due to the dielectric anisotropy
energy

in the limit E → 0 one can write, e.g. Ac(E) = Ac(1 + ζAE2)

for A & Ac this leads to the field dependence of the tilt angle

ϑ =
√

a
g(E) (A− Ac(E)) ≈

√
a
g (A− Ac)

(
1 + ζE2 +

ζA

2
Ac

Ac − A
E2

)
(14)

and to the orientability

∂2ϑ/∂E2|E=0 ∼ (A− Ac)
−1/2 +O((A− Ac)

1/2)

which is observed in Fig.8.
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