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Objectives 
For SB block and starblock copolymers, to clarify 

LAOS 

Lamella Cylinder Gyroid Poly-grain 
orientation 

1. Structure-rheology relationships for lamellar-, 
     cylinder- and gyroid-forming samples  
2. Flow-induced orientations by large amplitude 
     oscillatory shear (LAOS) and steady flow (SF) 
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Gyroid-Forming 
SB Diblock Copolymer  



SB Diblock Copolymer 

Code Mn(S) Mn(B) f(B) Mw/Mn 

1SB20 20.1K 10.8K 0.36 1.09 

Anti-oxidant (2 wt%) 

Kneader : 160oC 
                 15min , 20rpm    

Hot press : 160oC 
                   15min , 2MPa   
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Time Sweep of G’ for 1SB20 
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G’ becomes stable 
after 74 hr at 150oC 
after 25 hr at 160oC 
after 40 min at 200oC 
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Quenched from T=160oC after Stabilization 
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G’ and G” at T=160oC after Stabilization 

Gcubic= 1.85×104 Pa    



Quenched from T=200oC after Stabilization 
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G’ and G” at T=200oC after stabilization 

C Gcubic= 2.61×104 Pa    



G’ and G” at T=160oC after stabilized at T=200oC  

Gcubic= 2.71×104 Pa    

200oC→160oC 



3D TEM Image of 1SB20 
(quenched from 160oC after stabilization at 200oC) 

220×220×74nm 
S(interface)/V  
= 1.45×106 (cm-1) 

H. Jinnai et al. 



Result of 3D Thinnig for 1SB20 
(quenched from 160oC after stabilization at 200oC) 

3-branch: 75%      average length: 15.3nm 

H. Jinnai et al. 

ν(network) 
=3.52×1017(cm-3) 220×220×74nm 



S(per chain) = π <S2> 

ν(Gcubic) = 4.58×1018 (cm-3) 

ν(network) = 3.52×1017 (cm-3) 

ν(interface) =　　                           = 
S(per chain) 

S(interface) / V 

PB 

3.63×1018 (cm-3) 

S(interface) / V = 1.45×106 (cm-1) 

<S2> =       [ (C∞Nl2)PS+ (C∞Nl2)PB ] 6 
1 

Gcubic= ν kT ν : # of molecules per unit volume 

PS 



160oC after  
stabilized at 200oC 

stabilized  
at 200oC   C 

stabilized  
at 160oC    B 

ν(Gcubic) 
(cm-3) 

ν(network) 
(cm-3) 

ν(interface) 
(cm-3) 

3.36×1018 2.78×1018 3.63×1018 

3.10×1018 4.00×1018 4.58×1018 

ν : # of molecules per unit volume 

2.20×1017 3.28×1017 3.52×1017 

Gcubic= ν kT 



Lamellar-Forming 
SB Starblock Copolymer 



(SB)n Star Block Copolymers 

 n Code Mn(PS) Mn(PB) fPB 

  2  2SB10   9.31K   11.6K 0.56   L 
  3  3SB10   9.53K   11.4K 0.55   L 
  4  4SB10   9.51K   11.4K 0.55   L 

2-3 wt% anti-oxidant was melt blended at T>TODT  
Melt pressed at T<TODT at 3MPa for 15 min.  
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TEM Micrographs of Toluene Cast Films 
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Freq. Despersion of G’ for Lamellar-forming 4SB10 

Superposition is 
possible in ordered  
and disordered 
states 

 G’ ~ ω1/2   

         at  ω < ωC 

Poly-grain states 

10K 

10K chain 
motion 

slope=1/2 motion of 
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domain 
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disordered
, one 
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Decrease in G’ after LAOS for 4SB10 

G’after/G’before  
at ω = 0.1 ωC
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Decrease in G’ after LAOS for 4SB10 
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TEM Micrographs of 4SB10 after LAOS (ωLAOS=0.1s-1, 160oC) 
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TEM micrographs of 4SB10 after LAOS (ωLAOS=10s-1, 160oC) 
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LAOS  at  γ = 0.5     ωLAOS/ωC ≅ 0.80    T/TODT ≅ 0.90 

Effect of n (=2,4) on G’ Reduction 

slope=1/2 

When n    , G’ 
due to stronger 
orientation of 
lamellae 

Data of 2SB10 
are superposed 
onto those of 
4SB10 at ω ≥ ωC 

n=4 

n=2 



Cylinder-Forming 
SB Starblock Copolymers 



(SB)n Star Block Copolymers 

 n Code Mn(PS) Mn(PB) fPB 

  2  2SB20   20.0K   10.5K 0.34   C 
  3  3SB20   19.9K   10.8K 0.35   C 
  4  4SB20   19.9K    10.2K 0.34   C 

2-3 wt% anti-oxidant was melt blended at T>TODT  
Melt pressed at T<TODT at 3MPa for 15 min.  
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ωC 

Freq. Despersion of G’,G” for Cylinder-forming 2SB20 

In poly-grain state 

 G’ ~ ω1/3   
         at  ω < ωC 

２０K １０K 



Freq. Despersion of G’,G” for Cylinder-forming 3SB20 

ωC In poly-grain state 

 G’ ~ ω1/4   
         at  ω < ωC 



Freq. Despersion of G’,G” for Cylinder-forming 4SB20 

ωC In poly-grain state 

 G’ ~ ω1/5   
         at  ω < ωC 



Decrease in G’ after LAOS and SF for 4SB20 
20K 

10K 

After LAOS 
G’ shows 
minimum at 
ωLAOS = 0.5s-1 

ωLAOS = γSF = 0.5s-1 

 SF is more effective 
 for cylinder orientation 

. 



20K 

10K 

Decrease in G’ due to LAOS 

 For SF 
 G’after / G’before=0.10 

At 160oC, 180oC 
ωLAOS　　　　    G’ 



Orientation of Hexagonal Cylinders 
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SF is more effective for Parallel Orientation 

60nm 

4SB20    at ωLAOS = γSF = 0.5s-1  (160oC) ・



4SB20 after LAOS (ωLAOS = 100s-1, 160oC) 

End Edge 

100nm 100nm 
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Cylinders are perpendicular to the disc surface!! 



Orientations of Lamellae and Cylinders 
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Conclusions 

 1) In ordered state, G’ ~ ω1/2. 
 2) After LAOS, G’ decreases with increasing  ωLAOS  
     due to parallel orientation. 
 3) Perpendicular orientation is also observed for low  
     ωLAOS. 

 1) In ordered state, G’ ~ ω1/(n+1). 
 2) After LAOS, G’ decreases with decreasing ωLAOS 
     (showing minimum) due to parallel orientation. 
 3) SF is more effective for parallel orientation. 
 4) For ωLAOS > ωC, cylinders orient perpendicular to disc.  

 For lamellar-forming samples 

 For cylinder-forming samples 
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Time sweep of G’, G” for 1SB20 
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2SB20    at ωLAOS = γSF = 0.5s-1 (160oC) 

Perpendicular orientation 

After LAOS 

End Flow 
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Theories for Slow Relaxation behavior 
Lamellar-forming，Poly-grains (randomly oriented ) 

    Kawasaki-Onuki (1990) 

   Hydrodynamic mode of lamellar motion 
   Overdamped second-sound mode 

   G’(ω)     G”(ω)             (Bη0)1/2ω1/2  

       B : bending modulus of lamella 
      η0 : viscosity in the disordered phase 

 Rubinstein-Obukhov (1993) 

Collective diffusion of copolymer   
chains along the interface 
controlled by defects 

 　G’(ω)     G” (ω) ~ ω1/2 

randomly 
 oriented 



Mechanisms of lamellar orientation 

1.  Selective rotation of grains 

2.  Selective melting and reformation of lamellae 

3.  Defect migration 

4.  Reduction of mechanical resistance 

5.  Tube orientation (for entangled chains) 

6.  Coupling of the lamella motion and the shear 
field (shear-induced lamella formation) 

H.Watanabe in “Structure and Properties of Multiphase Polymeric 
Materials”, pp. 317-360, Marcel Dekker, New York (1998) 


