Viscoelasticity of Copolymers and Polymer Blends with Bicontinuous and Other Structures

M. Takahashi Kyoto Institute of Technology, Japan

Part I

Structure and Rheology of Block and Starblock Copolymers

For SB block and starblock copolymers, to clarify

- 1. Structure-rheology relationships for lamellar-, cylinder- and gyroid-forming samples
- 2. Flow-induced orientations by large amplitude oscillatory shear (LAOS) and steady flow (SF)

chain motion

defects and
grainmotion of lamellar,
cylinder, and gyroid
domains

Gyroid-Forming SB Diblock Copolymer

SB Diblock Copolymer

Code	M _n (S)	M _n (B)	f(B)	M_w/M_n
1SB20	20.1K	10.8K	0.36	1.09

Temperature Sweep of G' and G"

Gyroid

Cylinder

Time Sweep of G' for 1SB20

TEM Micrographs of 1SB20

Quenched from T=160°C after Stabilization

G' and G" at T=160°C after Stabilization

Quenched from T=200°C after Stabilization

G' and G" at T=200°C after stabilization

G' and G" at T=160°C after stabilized at T=200°C

$200^{\circ}C \rightarrow 160^{\circ}C$

3D TEM Image of 1SB20 (quenched from 160°C after stabilization at 200°C)

$$G_{cubic} = \mathbf{v} \mathbf{k} \mathbf{T}$$

$$\nu(G_{cubic}) = 4.58 \times 10^{18} (cm^{-3})$$

$$v(network) = 3.52 \times 10^{17} (cm^{-3})$$

$$v(\text{interface}) = \frac{S(\text{interface}) / V}{S(\text{per chain})} = 3.63 \times 10^{18} (\text{cm}^{-3})$$

PS
S(interface) / V = 1.45×10⁶ (cm⁻¹)
S(per chain) =
$$\pi < S^2 >$$

 $< S^2 > = \frac{1}{6} [(C_{\infty}Nl^2)_{PS} + (C_{\infty}Nl^2)_{PB}]$

$$G_{cubic} = v kT$$

v : # of molecules per unit volume

	160°C after stabilized at 200°C	stabilized at 200°C C	stabilized at 160°C B
$\nu(G_{cubic})$ (cm ⁻³)	4.58×10 ¹⁸	4.00×10 ¹⁸	3.10×10 ¹⁸
v(network) (cm ⁻³)	3.52×10 ¹⁷	3.28×10 ¹⁷	2.20×10 ¹⁷
v(interface) (cm ⁻³)	3.63×10 ¹⁸	2.78×10 ¹⁸	3.36×10 ¹⁸

Lamellar-Forming SB Starblock Copolymer

(SB)n Star Block Copolymers

2-3 wt% anti-oxidant was melt blended at T>T_{ODT} Melt pressed at T<T_{ODT} at 3MPa for 15 min.

motion of lamellar domain

concentration fluctuation

disordered , one phase chain motion

Superposition is possible in ordered and disordered states

Poly-grain states G' ~ $\omega^{1/2}$ at $\omega < \omega_{C}$

Decrease in G' after LAOS for 4SB10

At each T G'_{after}/G'_{before}

Observation of Lamellar Orientation

Parallel > Perpendicular ≫ Transverse

Cylinder-Forming SB Starblock Copolymers

2-3 wt% anti-oxidant was melt blended at T>T_{ODT} Melt pressed at T<T_{ODT} at 3MPa for 15 min.

Freq. Despersion of G',G" for Cylinder-forming 2SB20

ωc

20K10K

In poly-grain state

G' ~ $ω^{1/3}$ at $ω < ω_C$

Freq. Despersion of G', G" for Cylinder-forming 3SB20

ω

In poly-grain state

$$G' \sim \omega^{1/4}$$

at ω < ω_C

Freq. Despersion of G',G" for Cylinder-forming 4SB20

ω

In poly-grain state

G' ~
$$ω^{1/5}$$

at $ω < ω_C$

Decrease in G' after LAOS and SF for 4SB20

After LAOS G' shows minimum at $\omega_{LAOS} = 0.5s^{-1}$

$$\omega_{LAOS} = \gamma_{SF} = 0.5s^{-1}$$

SF is more effective for cylinder orientation

Orientation of Hexagonal Cylinders

4SB20 at $\omega_{LAOS} = \dot{\gamma}_{SF} = 0.5s^{-1}$ (160°C)

After LAOS

After SF

SF is more effective for Parallel Orientation

4SB20 after LAOS ($\omega_{LAOS} = 100s^{-1}$, 160°C)

Cylinders are perpendicular to the disc surface!!

Orientations of Lamellae and Cylinders

Parallel Perpendicular Transverse

Conclusions

For lamellar-forming samples

- 1) In ordered state, G' ~ $\omega^{1/2}$.
- 2) After LAOS, G' decreases with increasing ω_{LAOS} due to parallel orientation.
- 3) Perpendicular orientation is also observed for low $\omega_{\text{LAOS}}.$

For cylinder-forming samples

- 1) In ordered state, G' ~ $\omega^{1/(n+1)}$.
- 2) After LAOS, G' decreases with decreasing ω_{LAOS} (showing minimum) due to parallel orientation.
- 3) SF is more effective for parallel orientation.
- 4) For $\omega_{LAOS} > \omega_{C}$, cylinders orient perpendicular to disc.

 $\begin{array}{l} C \to G \text{ is fast} \\ G \to C \text{ is slow} \end{array}$

G' C

G

G

С

G"

2SB20 at $\omega_{LAOS} = \dot{\gamma}_{SF} = 0.5s^{-1} (160^{\circ}C)$

After LAOS

After SF

Flow

 \bigcirc

End

60nm

Radial

Parallel orientation

Theories for Slow Relaxation behavior

Lamellar-forming, Poly-grains (randomly oriented)

Kawasaki-Onuki (1990)

Hydrodynamic mode of lamellar motion Overdamped second-sound mode

$$G'(\omega) \cong G''(\omega) \cong \frac{\pi}{24\sqrt{2}} (B\eta_0)^{1/2} \omega^{1/2}$$

oriented

B : bending modulus of lamella η_0 : viscosity in the disordered phase

Rubinstein-Obukhov (1993)

Collective diffusion of copolymer chains along the interface controlled by defects

$$G'(\omega) \cong G''(\omega) \sim \omega^{1/2}$$

Mechanisms of lamellar orientation

- 1. Selective rotation of grains
- 2. Selective melting and reformation of lamellae
- 3. Defect migration
- 4. Reduction of mechanical resistance
- 5. Tube orientation (for entangled chains)
- 6. Coupling of the lamella motion and the shear field (shear-induced lamella formation)

H.Watanabe in "Structure and Properties of Multiphase Polymeric Materials", pp. 317-360, Marcel Dekker, New York (1998)