Shear-induced onion formation of complex bilayer lamellar phase

Nagaoka University of Technology S. Fujii

Shear induced onion phase

Onion is defects ?

Focal Conic Domain

Oily streak defect Onion

What is difference between defect and onion?

Rheology of lamellar phase modified by polymer

H. E. Warriner, *et al.*, (1997)

Segregation of polymer chains

P

Complex bilayer lamellar phase

Guest component

Repulsive force due to the exclusive volume effect

Increase of the effective bilayer thickness

Increase of the bending rigidity (in microscopic scale)

$$\kappa_{eff} = \kappa + 0.64 k_B T \sigma_{\rho} R_g^2$$

T. Taniguchi

C₁₂E₅/Pluronic/H₂O

M. Imai, et al., JCP (2006)

Dislocations in Smectic LC

Edge and Screw dislocations form loops.

Defect-mediated rheology of Sm*A*

$$\dot{\gamma} \sim \sigma^m m > 1$$

Surfactant lyotropic lamellar phase

C₁₂E₅ (35wt%)

C.-Y. D. Lu, et al., EPJE (2008)

Sample

Nonionic surfactant : $C_{10}E_3$

Tri-ethyleneglycol mono-*n*-decyl ether

Concentration 40wt%

Polymer mole fraction

$$X_{P} = \frac{n_{Poly}}{n_{C10E3} + n_{Poly}} (= 6.87 \text{ x } 10^{-3} \text{ mol})$$

$$X_{P} = 0.2 - 1.5 mol \%$$

Pluronic (triblock copolymer)

$$EO_{N_{EO}} - PO_{N_{PO}} - EO_{N_{EO}}$$

PEO

PPO

PEO

Degree of polymerization $N_{EO} = 3 \sim 37$ $N_{PO} = 30,60$

B. Cabanne, et al., (1993)

 $R_g = 0.1078 M_{PEO}^{0.635}$

Different confinement regime of polymer in the water layer C. Ligoure, *et al.*, (1997)

Shear rate dependence of viscosity $(C_{10}E_3/H_2O)$

Shear-thickening is a sign of the onion formation.

 $C_{10}E_3$ / Pluronic ($X_P = 1 \mod \%$) / H_2O system

Increasing N_{EO} hinders shear induced onion formation.

Shear thinning behavior at low shear rates,

$$\eta \sim \dot{\gamma}^{1/3}$$

Shear thinning behavior ... dislocation loop motion

Polymer concentration dependence of L_{α} /Onion transition

Inhibition of the onion formation

No Onion formation

At low polymer concentration, the onion phase is easily induced by shear.

Viscoelasticity of polymer-doped lamellar phase

G' and G'' measurements after pre-shear at 1s⁻¹ (in the lamellar phase)

Polymer segregation (inhomogeneous distribution) on the membrane causes the increase in the defects density.

High viscoelasity gives the Onion formation.

Development of modulus with pre-shear

Shear modulus develops with pre-shear rate.

 $C_{10}E_{3}/H_{2}O$ Conc.=40wt% $Gap = 50 \mu m$

Defect density increases with shear.

$$\rho = \rho(\dot{\gamma}_{pre}, X_{Poly}) \qquad G' = G'(\dot{\gamma}_{pre}, X_{Poly})$$

Viscolasticity of lamellae/onion transformation process

Onion formation is controlled by defect density ? G' starts to increase at the tenth of the critical shear rate.

Bending modulus and Critical shear stress

Critical shear stress can be scaled by the increment of the bending modulus.

Summary

Shear induced onion formation can be controlled by polymer.

Defect formation triggers the onion formation. Defect density depends on the polymer concentration. Defect density increases with pre-shear.

Shear stress controls the shear induced onion formation behavior.