Plasticity and Flow of Soft Materials

Laurence Ramos

Laboratoire des Colloïdes, Verres et Nanomatériaux CNRS-Univ. Montpellier 2, Montpellier, France

> *laurence.ramos@univ-montp2.fr www.lcvn.univ-montp2.fr/~ramos/*

Complex Fluids under Mechanical Stress

http://mocoloco.com/art/archives/001001.php

From the process of industrial fluids

to the flow of soft glasses

- shear-induced transitions
- solid-liquid transition

Outline

I. Soft 2D columnar crystal

A) **Designing** a versatile self-assembled structured system

B) **Flow -** characterizing and modeling the shear-induced transition

C) **Plasticity -** Understanding the solid-liquid transition in complex fluids

II. Towards the **plasticity** of soft 3D polycrystals

III. Plasticity and spontaneous dynamics of soft glasses

Self-Assembled Hexagonal Phases as Templates for Nanomaterials

Liquid-crystalline phases as templates for the synthesis of mesoporous silica

George S. Attard, Joanna C. Glyde & Christine G. Göltner NATURE · VOL 378 · 23 NOVEMBER 1995

In situ templating of PbS nanorods in reverse hexagonal liquid crystal

Huang et al. Colloids and Surf. A 2004

Experimental System

Soft columnar crystal

self-assembled system

- triangular array of tubes
- 1D liquid, 2D solid

Experimental System

1D liquid, 2D crystal

LR and Fabre, Langmuir (1997)

Our strategy to Increase the Spacing between the Tubes

 $C_{18} - POE_{5K}$ ($R_{G} = 2.4$ nm)

Effective Polymer Thickness

Excluded volume interaction between the tubes Same effective surface density upon addition of polymer

A Versatile Soft Columnar Crystal

Specificities of the Soft Columnar Crystals

Soft hexagonal phase : a unique system

Tunable characteristic sizes

Template for nanomaterials

... one example

Chemistry Outside the Surfactant Tubes: Pt and Pd Porous Nanoballs

2 required conditions

- Confinement (in a hexagonal matrix)
- Slow and homogeneous reduction in the bulk
 (γirradiation)

Surendran, LR et al. Chem. Mater (2007) Surendran et al. J. Phys. Chem. C (2008)

Specificities of the Soft Columnar Crystals

Soft hexagonal phase : a unique system

Tunable characteristic sizes

Template for nanomaterials

Tunable elasticity

Elasticity of Surfactant Hexagonal Phase

Specificities of the Soft 2D Crystals

Soft hexagonal phase : a unique system

- Tunable characteristic sizes
- Tunable elasticity
- Structural signature

Flow Curves

- shear-thinning
- II stress plateau and hysteretic loop
- III low viscosity Newtonian fluid

Flow Curves

10 $\dot{\gamma}$

SAXS under Shear

SAXS under Low Shear

- Polydomain
- Preferential orientation of the tubes along ${\bf v}$

Structural Transition under Shear

of the tubes along v

Structural Transition under Shear

Role of Dislocations

 $\sigma/G_0 = f(b \rho^{1/2})$

Nabarro et al. (1964)

G₀: shear modulus
b: Burgers vector
ρ: density of dislocations

Driving force $F_1 \sim b\sigma$ (Peach-Kohler)

Work-hardening of crystals

dimensional arguments

Resistive force $F_2 \sim b^2$ (line tension of a dislocation)

$\langle \sigma \rangle \sim b$

$$\sigma \sim G_0 b \rho^{1/2}$$

3 types of dislocations in columnar crystal

Marchetti and Nelson (1990)

Role of Dislocations

Determination of $\rho = f(\dot{\gamma})$ from Rheology Data

Determination of $\rho = f(\dot{\gamma})$ from SAXS Data

correlation length $\xi = \frac{2\pi}{\Delta q}$ $\xi =$ mean distance between dislocations $\rho = 1/\xi^2 \qquad \rho \propto \dot{\gamma}^{2/3}$

Broadening of the diffraction peaks

 $\rho \propto \dot{\gamma}^{2/3}$

Shear-thinning regime

- Scaling in agreement with simple theory of work-hardening of crystals
- Shear-melting due to a proliferation of dislocations

LR and F Molino, PRL (2004)

Analogies with Flux Line Lattices in Superconductors

FFL

soft hexagonal phase

Shear-melting due to a proliferation of dislocations

Shear-Melting... and Re-Crystallization

Summary

Solid-Fluid Transition

-

- Nature of the solid to fluid transition?
- Prediction whether and when a material will flow
- Structural modifications at the onset of flow?

Behavior under Low Stress

800

Behavior under Low Stress

Behavior under Low Stress

Nechad, PRL (2005)

Analogies with

heterogeneous composite polymer materials EXCEPT flow with low viscosity instead of rupture

Behavior under Low Stress

Onset of Flow

- $\tau_{\rm f}$ \ when σ /
- $\tau_{\rm f} vs \sigma$ shifted towards smaller stresses for softer materials

Onset of Flow

• $au_{
m f}$ \ when σ /

- $\tau_{\rm f} vs \sigma$ shifted towards smaller stresses for softer materials
- $\gamma_{\rm c} \sim 70 \%$ independent of σ and G_0

Onset of Flow

Powerlaw variation of the time with stress

→ No yield stress?

• Collapse when stress normalized by $G_0^{2/3}$

→ Fluidization time depends only on the force applied per tube

→ **B**ulk properties?

SAXS under Controlled Stress

Structures in the creep regime and at the onset of flow?

Time Evolution of the Angular Scan

Time Evolution of the Peaks' Positions and Intensity

Time Evolution of the Peaks' Positions and Intensity

 $Contrast = (I_{max} - I_{min}) / (I_{max} + I_{min})$

Correlation Structure / Rheological Behavior

At the onset of flow:

Collective rearrangements of all crystallites

- All oriented along the flow (90 deg) but wide angular distribution (35 deg)

- In agreement with the scaling for fluidization time

Not due to wall slip !!

What happens in the solid regime?

= Percolated network of resistive paths

What happens in the solid regime?

Before onset of flow:

slow rearrangements to remove « most unfavorable » grain orientation (180 deg)

Correlation Structure / Rheological Behavior A NAIVE PICTURE

Correlation Structure / Rheological Behavior A NAIVE PICTURE

Time (s)

F. Caton, Rheologica Acta (2008)

Outline

I. Soft 2D columnar crystal

A) **Designing** a versatile self-assembled structured system

B) **Flow -** characterizing and modeling the shear-induced transition

C) **Plasticity -** Understanding the solid-liquid transition in complex fluids

II. Towards the **plasticity** of soft 3D polycrystals

III. Plasticity and spontaneous dynamics of soft glasses

Plasticity of Polycrystals

DYNAMICS and PLASTICITY of ATOMIC POLYCRYSTALS

- Original mechanical properties of polycrystals (e. g. superplasticity)
- Physical mechanisms at the origin of plasticity?
- Role of grain boundaries?

Simulation

Schiotz, 1998

Experiment

J. Weiss, LGGE/CNRS

OUR APPROACH: USE of a COLLOIDAL ANALOGUE

block-copolymer

<u>nanoparticles</u>

segregation in the grain-boundaries

cubic phase (fcc)

optical microscopy

Plasticity of Polycrystals

DYNAMICS and PLASTICITY of ATOMIC POLYCRYSTALS

- Original mechanical properties of polycrystals (e. g. superplasticity)
- Physical mechanisms at the origin of plasticity?
- Role of grain boundaries?

Simulation

Schiotz, 1998

Experiment

J. Weiss, LGGE/CNRS

OUR APPROACH: USE of a COLLOIDAL ANALOGUE

Direct Visualization of Grain Refinement

- **2** control parameters
- Φ, volume fraction of « impurities »
- *R*, speed of the crystallization ramp

Surface Area (μm^2)

Super Preliminary Shear Experiments

Cf. simulations Shiba & Onuki (Poster 108)

on-going work ...

Outline

I. Soft 2D columnar crystal

A) **Designing** a versatile self-assembled structured system

B) **Flow -** characterizing and modeling the shear-induced transition

C) **Plasticity -** Understanding the solid-liquid transition in complex fluids

II. Towards the plasticity of soft 3D polycrystals

III. Plasticity and spontaneous dynamics of soft glasses

Slow Dynamics of Soft Glasses

SLOW DYNAMICS of JAMMED MATTER

still poorly understood

- Associated with aging & dynamical heterogeneities
- Key role of elasticity & relaxation of internal stresses

Origin? Driving force?

colloids

EXPERIMENTAL SYSTEM & METHOD

- 20 µm
 - onion phase

- Slow dynamics after a temperature quench
- Time- and spaceresolved measurements
 - $\checkmark \Delta r_{\rm i}(\tau,t_{\rm w})$

Time- and Space-Resolved Measurements

Role of Temperature ?

Global displacement

- Intermittent motion
- Fluctuations around an average position

Role of Temperature ?

Global displacement

Role of Temperature ?

Global displacement

Temperature-driven Intermittent SHEAR Deformations

SHEAR

Temperature-driven Intermittent SHEAR Deformations

REVERSIBLE rearrangements

SHEAR

_ '					1					1					1	_
L _	>			_>	_>	_>		_>	_>	_>	_>	>	_>	<u> </u>		
ŀ			-											-		-
⊢ -	->		->	_>	->-	<u> </u>	->-	->-	->-	_ ~ _	->-	->	->-	->-	<u> </u>	
ŀ																-
			-»-	->-				-> -					- -	-+ -		-→ -
ŀ																-
⊢ ~		~ -	<u>~</u> −	÷ -	• -	÷ -	+ -	• -	* -	· -	÷ –	* -	÷ -		• -	• -
F																- 1
F ~	-	• •	~	~	~	-	•	•			-	•	•		•	- 1
F																1
F -	-	-	-			-	~	-	~	~		-	-	-		-
[]										~		-	-	-	-]
	-	-	-	-	-	-	-	-	-	-	-		-			
	~	*	-		-	•	÷	4	÷	*	•	-	-	~	÷	_
ŀ.																_
	÷	÷	-	-	-	←	-	4	-	~	←	÷	+	←	+	-
ŀ																-
	4	4	4 —	~	~	•	~	*	•	+	+	+	≁	+	~	-
F																-
⊦ •	-	-	÷	*	~	÷	<u> </u>	*	*	+	<u> </u>	~	+	÷	*	- 1
F .		_	_	-			-	_		_		_		_		- 1
<u>- ۴ ا</u>	•	*	*-	*	*	•	*	*	•	*	÷	*-	÷	*-		-
F,																-

REVERSIBLE and IRREVERSIBLE rearrangements

Identification of the Plastic events

Decoupling the purely plastic events fom the reversible shear deformations

Find plastic events \triangle \checkmark delay τ between images such that $\Delta R_{//}(\tau) = 0$

Structure of the Plastic Events

- Correlated on large length scale (~ 1 mm >> onions)
- Vortex-like
- Analogy with simulation of 2D hard spheres deep in the glass phase (Brito and Wyart, J. Stat. Mech. 07)

Aging Dynamics of the Plastic Events

Aging dynamics of a deeply jammed system (ϕ =1)

Origin:

AT → mechanical shear deformations PLASTIC rearrangements Ballistic motion Vortex-like Aging Aging

\times General behavior?

Elastic systems (concentrated pastes, copolymer phase, emulsions, fractal colloidal gels, ...)

\succ Analogy with

sheared athermal suspensions? (Pine and coll.) granular materials under thermal cycling? (Géminard and coll.)

CONCLUSIONS

Probing the structure of soft materials under shear

Shear-induced transition interpretated using model for crystalline solids **Plasticity** / a physical mechanism for the solid-to-fluid transition

3D crystal direct space

Plasticity ?

3D amorphous solid

direct space

Plasticity and spontaneous dynamics / a physical mechanism at the origin of the slow aging dynamics

Many thanks to

2D soft columnar crystals

Pascale Fabre (Paris, Bordeaux) Christian Ligoure, Raymond Aznar & Ty Phou (Montpellier) François Molino, Julian Oberdisse & Teresa Bauer (Montpellier) Hynd Remita, Geeta Surendran & Prem Felix (Orsay) Eric Prouzet (Montpellier, Waterloo)

Onions Sylvain Mazoyer & Luca Cipelletti (Montpellier)

3D soft polycrystals *Neda Ghofraniha, Elisa Tamborini & Luca Cipelletti (Montpellier)*

AND YOU