ISSP soft matter 2010

Interfacial microrheology of phospholipid monolayers at the air/water Interface

Siyoung Choi K. Kim, J. Zasadzinski, T. Squires University of California, Santa Barbara

Motivation

Science

Foams

Shampoo, detergents, etc.

Coating Process

High Internal Phase Emulsion(PS-P2VP) Kramer group (2003)

Lung surfactants Zasadzinski group (2003)

Engineering

Interfacial viscoelasticity

A magnetic needle at the air/water Interface

Interfacial viscoelasticity

A magnetic needle at the air/water Interface

A few drops of water-insoluble surfactants

DPPC (phospholipid)

DPPC +Chol (60:40)

DPPC (phospholipid) DPPC +Chol (60:40)

DPPC (phospholipid) DPPC +Chol (60:40)

DPPC (phospholipid) DPPC +Chol (60:40)

Viscometry of 2D interfaces

- η_s : surface viscosity
- η : subphase viscosity
- a : disk radius
- P : Contact perimeter to 2D surface
- A : Contact Area to bulk phase

 $Bo = \frac{\text{surface drag}}{\text{bulk drag}} = \frac{\eta_s \nabla u P}{\eta \nabla u A} \approx \frac{\eta_s}{\eta a} \quad \text{``Boussinesq}}_{\text{Number''}}$

High perimeter/area ratio: higher sensitivity

High aspect ratio (e.g. needles - Brooks, Fuller, Vermant, Fischer, Zasadzinski, ...) Small probes (microrheology - Weeks, Sickert & Rondelez, Fischer, Dai, ...

General Experimental Procedure

General Experimental Procedure

requirements

- Small, yet visible
- Ferromagnetic
- Amphiphilic

Photolithography

requirements

- Small, yet visible
- Ferromagnetic
- Amphiphilic

Photolithography

requirements

- Small, yet visible
- Ferromagnetic
- Amphiphilic

Photolithography

requirements

- Small, yet visible
- Ferromagnetic
- Amphiphilic

$20 \mu m$ diameter

WD 5 µm 10.5 Disks_20

bright field image

Amphiphilic - Janus

Photolithography

requirements

- Small, yet visible
- Ferromagnetic
- Amphiphilic

Control over Size, Shape, Magnetic and Surface properties

20µm diameter

lµm tall

bright field image

Amphiphilic - Janus

recover ζ (~viscosity) and K (~elasticity)

Surface drag of the probe

Apparatus

Allows interfacial visualization during measurement

Slow dynamics - does not flow for 10 sec

Slow dynamics

- does not flow for 10 sec

Incredibly long relaxation time for 2 nm thick film

Slow dynamics - does not flow for 10 sec

Elasticity - domain deformation Viscosity - Slipping domains

Incredibly long relaxation time for 2 nm thick film

Slow dynamics - does not flow for 10 sec

Elasticity - domain deformation Viscosity - Slipping domains

Incredibly long relaxation time for 2 nm thick film

Where does this G' come from?

 $\gamma \sim G' a \sim 10^{-7} (N / m) \times 10^{-5} (m) \sim 1 pN$

Where does this G' come from?

$$\gamma \sim G' a \sim 10^{-7} (N / m) \times 10^{-5} (m) \sim 1 pN$$

<u>Molecular argument</u> adhesive energy kT line tension ~ line length I nm

Where does this G' come from?

$$\gamma \sim G' a \sim 10^{-7} (N / m) \times 10^{-5} (m) \sim 1 pN$$

Linear rheology after large shear

Linear rheology after large shear

Viscous dominant over frequencies

Linear rheology after large shear

Viscous dominant over frequencies

History dependent rheology

Visualization for large shear

Visualization for large shear

- Domain deformation
- Interface fractures(plastic)
- Slip-line forms

Visualization for large shear

Does the interface heal?

- Domain deformation
- Interface fractures(plastic)
- Slip-line forms

A few clues of yield stress

2 nm molecular Mayonnaise??

higher stress

Evident yield stress

$$\tau \sim \sigma_y r_c (2\pi r_c)$$

applied stress~ yield stress

$$\sigma_y \sim 10^{-8} N / m$$

Yield stress

Theories and experiments by Daniel Bonn

Aging (system) vs Rejuvenation (applied stress)

Can we do analogous experiments after yielding the interface?

Field off

25x real time Healing by unwinding

25x real time Healing by unwinding

Strong memory Slow recovery Field off

25x real time Healing by unwinding

Watching individual domains

Blue - TI transition Red - recoiling Green - change its neighbor

Domains don't melt - they stretch!

Rayleigh - Plateau instability 3D

Asymmetric stress response

Chirality of DPPC

Conclusion

- Direct visualization of individual DPPC domains under stress
- Shear banding, yield stress, history dependence and aging
- 2D Soft glassy materials 2D high internal phase emulsions

