RELEASE OF CONTENT THROUGH MECHANO-SENSITIVE GATES IN PRESSURISED LIPOSOMES

Martti Louhivuori University of Groningen

www.cgmartini.nl

MARTINI coarse-grained model

MARTINI CG model

interaction sites

parametrisation of MARTINI

★ experimental (thermodynamic) data
→ non-bonded interactions
★ atomistic MD simulations

→ bonded interactions

parametrisation bonded interactions

parametrisation non-bonded interactions

THE VALIDATION

comparing to experimental measurements

Rhombohedral phase (experimentally observed for DOPC/DOPE 3:1 and 2:1 Lyan & Huang, 2002)

Reproduced in CG simulation (Marrink & Mark, Biophys. J., 2004)

vesicles w/ proteins

M. Louhivuori / ISSP workshop / Tokyo, 24.8.2010

vesicles

SPEED

Ш

wa

short-range interactions large time-step few degrees of freedom GENERAL consistent modeling biomolecular systems easily extended

EASE of USE building-block approach limited # of particles so4 physical units

ACCURACY parametrisation based on thermodynamic data multi-level optimisation

SC

No

MARTINI CG model

interaction sites

drugs

patient

targeted drug release. how? M. Louhivuori / ISSP workshop / Tokyo, 24.8.2010

drug delivery vehicle "nanobot"

drug delivery vehicle "nanobot"

mechano-sensitive channels

- * "safety valves" of cell
- * sense tension in the membrane
- * MscL, MscK, MscS, MscM
- * < 10 mN/m

MscL

controllable activation & non-selective conductance

MscL activity

- * flickering conductivity* multiple levels
 - \rightarrow subconductive states
- * activation < 1 ms
- * de-activation I-100 ms

Sukharev *et al.* (1997) Annu Rev Physiol 59: 633–657

non-selective channel

* no ion selectivity

* even small
 proteins pass
 through! 15-20 Å

Cruickshank *et al.* (1997) Biophys J 73: 1925–1931

photosensitivivity

* attached
 compound
 undergoes light
 induced charge
 separation

* reversible

* localised

Koçer *et al*. (2005) Science 309: 755-758

photosensitivivity

- * photosensitive lipids used to transfer signal to mechanical stress
- * reversible
- * localised

Folgering et al. (2004) Langmuir 20: 6985–6987 M. Louhivuori / ISSP workshop / Tokyo, 24.8.2010

nano-container nano-particles aka liposome aka drugs

nano-transporter

LIPOSOMES

* tiny lipid vesicles

- * membrane fusion
- * trans-membrane transport
- * drug delivery
- * curvature effects

MSCL

- * mechano-sensitive
 - * pressure valves of cells
 - * touch & hear
- * non-selective, large
 membrane channel

$\begin{array}{ll} 660 \ kN/m \cdot s \rightarrow lysis \\ 140 \ kN/m \cdot s \rightarrow ok \end{array} \qquad \begin{array}{ll} \text{Oh-oh!} \end{array}$

M. Louhivuori / ISSP workshop / Tokyo, 24.8.2010

activation mechanism

postactivation 67 mN/m Ø 24 nm 1.04 H20/ ns

MFFA boundary potentials

mimic interactions with bulk solvent

Risselada et al. (2008) J Phys Chem B 112: 7438-7447

pumping water into liposomes

- * additional mean-field potential inside the liposome
- * start with r = 0.01 nm
- * increase slowly for 20ns
 until r = 3.9 nm
- * fill the cavity with
 water, relax and repeat
 as needed

water-repellant lipid tails

DOPC **wDOPC** * modified Lennard-Jones potential against NC₃ NC₃ water PO₄ PO₄ C5 wC5GLI GLI GL2 GL2 epsilon 2.0 2.0 CI CI CI Сі sigma 0.47 0.7 C_2 C2 C2 C_2 D3 D3 $V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$ D3 D3 C_4 C_4 C4 C4 C5 wC5 C5 wC5

3D pressure fields

Ollila et al. (2009) Phys Rev Lett, 102: 078101

- * divide system into a 3D
 grid
- * use local virial for each
 volume element
- * calculate averages

$$P_{local}(r) = \frac{1}{V} \left[\sum_{i} \delta\left(r - r_{i}\right) m_{i} v_{i} \otimes v_{i} + \frac{1}{2} \sum_{i \neq j} F_{ij} \int_{C_{i}j} \delta(r - 1) dl \right]$$

flow rate

R σ V

summary

* large-scale biological * war systems accessible to CG OF simulations

- * release of an osmotic
 shock via MscL
 activation achieved
- * MscL activation is indeed a last-ditch effort to prevent lysis
- * iris-like, non-symmetric helices a f
 opening
 M. Louhivuori / ISSP workshop / Tokyo, 24.8.2010

* water flux $OUT: (6.0 \pm 1.3)$ ions/ns $IN: (1.7 \pm 0.3)$ ions/ns

> MODEL: 0.2–40 ions/ns Steinbacher et al. (2007) CurrTopicsMembranes 58:1-24

* pore radius (11.6 ± 0.8) Å (exp. 15-20 Å)

* blocking of the channel by the cytoplasmic helices a first step in closure?

future

* dye molecules to directly compare our release of nano-particles to experimental data

* activation of the channel using lyso-lipids * nano-pores formed by other molecules, e.g. anti-microbial peptides

rijksuniversitei groningen

> Siewert-Jan Marrink Erik van der Giessen Jelger Risselada

UPPSALA UNIVERSITET

David van der Spoel

TAMPERE UNIVERSITY OF TECHNOLOGY Samuli Ollila Ilpo Vattulainen

Stockholm University Erik Lindahl

