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Dynamical membrane curvature instability controlled by intermonolayer friction 5

after reaching a maximum (frames 4.3 s to the end).
The following control experiments have been carried out: (i) We have checked

that no deformation occurs if only buffer solution is injected. (ii) In order to verify
that the observed effects were not simply due to charge screening and/or osmotic
effects, a local injection of salt solution (NaCl instead of NaOH) has been performed.
The typical smooth and reversible deformation has not been observed in these control
experiments, which shows that the pH increase is crucial in our instability.

Fig. 2 shows the measured time evolution of the height H(t) of the deformation
of the vesicle with respect to its initial shape for the experiment presented in Fig. 1.
One can see easily on this figure the two-step process described previously. For more
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Figure 2. Typical example of the time evolution of the vesicle deformation,
measured in front of the pipette, in a “pulse”experiment. Dots: time evolution
H(t) of the deformation amplitude. Solid line: Time evolution d(t) of the distance
of the micropipette from the electrode supporting the GUV.

clarity, the distance of the micropipette from the electrode supporting the GUV is
also presented.

Several “pulse”experiments were conducted on three different GUVs. The
complete analysis of these experiments is presented in Sec. 5.

4. Theoretical model

4.1. Free energy of a bilayer membrane

The free energy per unit area f of a lipid membrane is well described on a large scale
by

f = σ0 +
κ

2
c2 − κcb

0c . (1)

This free-energy density depends on the membrane curvature c, which is defined as
the sum of the two principal curvatures on the bilayer midsurface. The constitutive
constants σ0, κ and cb

0 denote, respectively, the membrane tension, its bending elastic
constant, and its spontaneous curvature. The resulting membrane free energy

F =
∫

dAf (2)
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4.1. Free energy of a bilayer membrane

The free energy per unit area f of a lipid membrane is well described on a large scale
by

f = σ0 +
κ
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c2 − κcb

0c . (1)

This free-energy density depends on the membrane curvature c, which is defined as
the sum of the two principal curvatures on the bilayer midsurface. The constitutive
constants σ0, κ and cb

0 denote, respectively, the membrane tension, its bending elastic
constant, and its spontaneous curvature. The resulting membrane free energy

F =
∫

dAf (2)

Helfrich model

c = c1 + c2

c1
c2

✤ Bilayer structure neglected
✤ Gaussian term         discarded (Gauss Bonnet)
✤     sets the area constraint (hides lipid density)
✤      spontaneous curvature of the bilayer (if asymmetric)

σ0

c1c2

cb
0

P. Canham (1970), W. Helfrich (1973)
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Area Difference Elasticity (ADE) model

F =
∫ (

σ0 +
κ

2
c2 − κcb

0c
)

dA +
k

4A
(∆A−∆A0)

2

Preferred (relaxed) area

A+
0

A−0

Cost to deviate from
Fixes

∆A0 = A+
0 −A−0

A = (A+
0 + A−0 )/2

✤ Lipid density is involved, but in a global manner

✤        related to the
integrated curvature

∆A

∆A

∆A = ∆A0

A

S. Svetina & B. Žekš (1989) –
U. Seifert, I. Miao, H.-G. Döbereiner & M. Wortis (1991)
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redistribute laterally? Obviously, the answer depends on the time scale 7;' on which lateral 
redistribution within the monolayers can take place. The driving force for this redistribution 
is the monolayer elasticity, characterized by an elastic area compressibility modulus k, while 
the main dissipative mechanism is intermonolayer friction with a phenomenological friction 
coefficient b. Dimensional analysis then yields y2 - kq2/b,  with the q 2  arising from the fact 
that densities are conserved quantities. Comparing the two time scales, one finds that for 
long wavelengths, q << qklbic, bending fluctuations occur at relaxed lipid monolayer densities, 
while at shorter wavelengths, q >> qk/bK, the effective bending rigidity increases, since the 
lipid molecules cannot redistribute themselves quickly enough [5]. Therefore, bending 
fluctuations and fluctuations in the lipid density of the two monolayers are dynamically 
coupled, giving rise to an interesting dispersion relation which is characterized by a mixing 
between two viscous modes. 

We start the derivation of the dispersion relations by introducing two densities I$* and $* 
for the upper (+) and lower (-) monolayers (see fig. 1). #* describes the density of lipids at 
the neutral surface of each monolayer. When the membrane is curved, the densities $* 
projected onto the midsurface of the bihyer  will differ from the densities I$* on the neutral 
surfaces of the monolayers. To lowest order in dH these two densities are related by 
$* = $* (1 2 2dH), where H is the mean curvature of the bilayer and d the distance between 
the midsurface of the bilayer and the neutral surface of a monolayer. The elastic energy 
density of each monolayer is given by (k/2)(I$*/& - 1)2 = (k/2)(p* k 2dHI2, where 
pf = ($*/#o - 1) is the scaled deviation of the projected density from its equilibrium value $o 
for a flat membrane. Thus, the continuum free energy, F, for the entire membrane 
reads 

F = dA E (2H)2 + k [(p' + 2dH)2 + (p- - 2dEO2] . (1) I ( z  2 I 
The first term arises from the bending energy of each monolayer, with the usual bilayer 
bending rigidity K .  (We have implicitly assumed that the monolayers are symmetric and have 
spontaneous curvature Cg") << d -'.) As written, F is a functional of the membrane shape and 
the two densities p * .  

We are interested only in the small displacements of a nearly planar membrane. Letting 
the planar membrane lie in the (z,y)-plane, we describe its fluctuations in the Monge 

Fig. 1. - Schematic geometry of a bilayer membrane. The circles with squiggly tails represent the lipid 
molecules. The dashed lines are the neutral surfaces of the monolayers, on which the densities #* are 
defined. The dark solid line is the midsurface of the bilayer, on which the projected densities $' and the 
scaled projected densities p' are defined. 

Bilayer curvature—density elasticity
U. Seifert & S. A. Langer (1993)

neutral surface

MID-SURFACE

✤ On the «neutral surface» density and curvature are independent 
variables (decoupled).
✤ Not if they are defined on the «mid-surface»

✤ Inter-monolayer friction and membrane bending : MID-SURFACE
E. Evans & Y. Yeung (1992)

F =
∫

dA

{
κ

2
c2 +

k

2

[(
ρ+ + ec

)2 +
(
ρ− − ec

)2
]}e
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Bilayer curvature—density elasticity
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where M and M1 are constants. Let us introduce two
constant Lagrange multipliers λ and µ to implement
these two global constraints. The relation δF + δEp −
δW + λδM + µδM1 = 0 must hold for any infinitesimal
deformation of the monolayer patch. The identification
of bulk terms in this relation yields

wz =
δF

δh
and wk = −hkwz , (11)

∂f̄

∂ρ̄
= −(v + λ) − (u + µ)φ , (12)

∂f̄

∂φ
= −(u + µ)ρ̄ . (13)

By identifying the boundary terms and using (12), we
obtain the components of the membrane stress tensor:

Σij =

(

f̄ − ρ̄
∂f̄

∂ρ̄

)

δij −
(

∂f̄

∂hj
− ∂k

∂f̄

∂hkj

)

hi

−
∂f̄

∂hkj
hki, (14)

Σzj =
∂f̄

∂hj
− ∂k

∂f̄

∂hkj
, (15)

which generalizes the result of Ref. [29] to the case where
there are inhomogeneities in ρ and φ. Note that the frac-
tion of each lipid species does not appear explicitly in
this result. Therefore, Eqs. (14)–(15) hold both for one-
component monolayers and for two-component monolay-
ers. Note also that Σ does not depend directly on the
external actions, which confirms its intrinsic nature.

Comparing our result with Ref. [29] shows that tak-
ing into account lipid density variations only changes
the isotropic term of the stress tensor, which now reads
f̄ − ρ̄ ∂f̄/∂ρ̄. This term is reminiscent of minus the
pressure of a two-dimensional homogeneous fluid bi-
nary mixture with area A described by a free energy
F (T, A, N1, N2) = Af(T, ρ, φ):

− P =
∂F

∂A

∣

∣

∣

∣

T,N1,N2

= f − ρ
∂f

∂ρ

∣

∣

∣

∣

T,φ

. (16)

While the last expression can be used locally in a non-
homogeneous fluid mixture, the case of the membrane is
more complex since its free energy depends on the curva-
ture. The “surface pressure” in a membrane is sometimes
defined as ρ ∂g/∂ρ − g where g is the part of the mem-
brane free-energy density f that depends only on ρ [30]
or, equivalently, what remains of f for a planar mem-
brane [31]. Interestingly, we find that the isotropic part
of the membrane stress tensor does not identify to minus
this surface pressure, since it is the complete, curvature-
dependent projected free-energy density f̄ that appears
in f̄ − ρ̄ ∂f̄/∂ρ̄.

The divergence of the stress tensor gives the force per
unit area, p, exerted by the rest of the monolayer on the
patch. By direct differentiation, we obtain:

pz = ∂jΣzj = −
δF

δh
, (17)

pi = ∂jΣij =
δF

δh
hi − ρ̄ ∂i

∂f̄

∂ρ̄
+

∂f̄

∂φ
∂iφ, (18)

where we have used ∂if = (∂f̄ /∂ρ̄)∂iρ̄ + (∂f̄ /∂φ)∂iφ +
(∂f̄/∂hj)hij +(∂f̄/∂hjk)hijk. At equilibrium, we can use
(11)–(13) to express p, which yields

pz = −wz, (19)

pi = −wi + ρ̄∂iv + ρ̄φ∂iu . (20)

These relations constitute the balance of surface force
densities for the monolayer at equilibrium. In particular,
p vanishes at equilibrium when the membrane is submit-
ted to no external actions (i.e. w = 0 and u = v = 0).

III. MONOLAYER MODEL

A. Free-energy density in terms of local variables

1. One-component monolayer

Let us derive the elastic free energy of a monolayer in
a bilayer from basic principles, first for a one-component
monolayer. We shall recover and extend the model of
Ref. [26], which is actually a local version of the ADE
model.

We assume that the free-energy density f per unit area
of the monolayer depends only on the mass density ρ and
on the local principal curvatures c1 and c2 of this mono-
layer. As in the previous section, the gradients of the cur-
vature and of the density are neglected in our description.
Note that, unlike f̄ and ρ̄, f and ρ are the free energy
and the mass per actual unit area of the monolayer, and
not per projected unit area. We use for both monolayers
the density and the principal curvatures defined on the
same surface S of the bilayer, so that the curvatures are
common to the two monolayers.

We will consider the physically relevant regime of cur-
vature radii much larger than the membrane thickness.
We will also restrict ourselves to small variations of the
density around a reference density ρ0. Note that it can
be convenient to take ρ0 different from the equilibrium
density ρeq of a plane monolayer with fixed total mass,
for instance to study a monolayer under tension. Let us
define

r =
ρ − ρ0

ρ0
= O (ε) , (21)

H = (c1 + c2) e = O (ε) , (22)

K = c1c2 e2 = O
(

ε2
)

, (23)

where e is a small length in the nanometer range that
allows to define the scaled total curvature H and the
scaled Gaussian curvature K. Since we typically expect
10−4 ≤ |r| ≤ 10−2 and 10−4 ≤ |ci e| ≤ 10−2, it is sensible
to assume that r and H are O(ε) while K is O

(

ε2
)

. The
free-energy density f is a function of these three non-
dimensional small variables.

: reference density

All quantities defined on the MID-SURFACE

✤ No term        : total number of 
lipids fixed
✤ Coupling term :         -> sets
✤ All terms (    ) depend on  

∝ r

rH e
ρ0σ0

f(r, H, K) = A0 + A1H + A2(r + H)2 + A3H
2

+A4K +O(ε3)
ρ0 != ρeq

Dynamical membrane curvature instability controlled by intermonolayer friction 6

is known as the Helfrich Hamiltonian [19]. The integral in Eq. (2) is a surface integral
over the area A of the bilayer midsurface. Note that we do not include any Gaussian
curvature term in this free energy. Indeed, the topology of the vesicle is not affected
by the instability we wish to study, so that the integral of the Gaussian curvature,
and thus its contribution to F , remains constant by virtue of the Gauss-Bonnet
theorem [20].

To account for the bilayer structure of the membrane, its free-energy density f
can be written as the sum of the free-energy densities of the two monolayers, which will
be noted f+ and f−. Since the curvature c is defined on the bilayer midsurface, it is
the same for both monolayers. Furthermore, we assume that the two monolayers
have the same lipid composition before the onset of the instability, so that they
have identical tensions and bending rigidities. They also have opposite spontaneous
curvatures, noted ±c0, since the lipids in the two monolayers are oriented in opposite
directions: their hydrophilic heads are oriented towards the exterior of the bilayer,
while their hydrophobic tails are oriented towards the interior of the bilayer. To study
our instability, it is necessary to take into account the inhomogeneities in the lipid
mass densities ρ± defined on the bilayer midsurface in each monolayer. Defining the
scaled densities r± = (ρ± − ρ0)/ρ0, where ρ0 is a reference density, which is chosen
identical for both monolayers, we may write [21]

f± =
σ0

2
+

κ

4
c2 ± κc0

2
c +

k

2
(
r± ± ec

)2
. (3)

In this formula, k is the stretching elastic constant of a monolayer, which is the same
for both monolayers as they are identical, and e denotes the distance between the
neutral surfaces of the monolayers [22] and the midsurface of the bilayer. Indeed, the
scaled densities in each monolayer at a distance e from the bilayer midsurface are
r±n = r± ± ec at first order in the small variable ec, so that if f± is written in terms
of the curvature and r±n = (ρ±n − ρ0)/ρ0, these two variables are decoupled. Such a
decoupling between deformations where only the curvature is modified (bending) and
deformations in which only the density is affected (stretching) is characteristic of the
neutral surface [22]. We choose the sign convention for the curvature in such a way
that a spherical vesicle has c < 0. Then the monolayer denoted “+” in Eq. (3) is the
outer monolayer.

The expression (3) of the free-energy density of a monolayer is a general second-
order expansion around a reference state characterized by a flat shape (c = 0) and a
uniform density ρ± = ρ0 [23]. It is valid for small deformations around this reference
state: r± = O(ε) and ec = O(ε), where ε is a small nondimensional parameter
characterizing the deformation.

If the densities on the neutral surfaces, ρ±n , are both equal to the reference value
ρ0, summing the monolayer free-energy densities f± in (3) gives back the standard
free-energy density (1) of the bilayer: f = f+ + f−. Note that we find cb

0 = 0
for the spontaneous curvature of the bilayer, since we have considered two identical
monolayers.

4.2. Modification of the free energy due to a local pH change

In the experiment, when the pipette expels the NaOH solution close to the GUV, it
induces a local increase of the pH, which affects the head groups of the phospholipids
forming the membrane, as explained in Sec. 3. As some of these head groups become
more negatively charged during this modification, the preferred area per lipid head

NB. Minimizing with respect to the densities -> ADE

1. Review of elasticity & DynamicsTokyo ISSP/SOFT2010 Workshop



Monolayer stress tensor
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based on the height of the membrane with respect to a
reference plane, is often referred to as the Monge gauge.
We do not assume yet that the membrane is weakly de-
formed. Let ρ̄(x, y) be the projected mass density, i.e.,
the lipid mass per unit area of the reference plane (x, y).
In order to study the case of a two-component mono-
layer, let us denote by φ(x, y) the local mass fraction of
one of the two lipid species. The case of a one-component
monolayer can be obtained by setting φ = 0.

Let f̄(ρ̄, φ, hi, hij) be the projected free-energy density
of the monolayer (i.e., the free energy per unit area of
the reference plane). Here and in the following, Latin
indices represent either x or y (not z) and hi ≡ ∂ih,
hij ≡ ∂i∂jh, etc. Note that we are assuming that the
free energy depends only on the mass density, on the local
lipid composition, and on the slope and curvature of the
monolayer. We have thus neglected the gradients of the
curvature and of the lipid density and composition. The
former approximation has already proved successful [3,
19]; the latter is justified by the fact that the correlation
length of the density fluctuations should not be larger
than the monolayer thickness (far from a critical point).

Let us consider an infinitesimal cut with length ds sep-
arating a region A from a region B in the monolayer, and
let us denote by m the normal to the projected cut di-
rected toward region A. The projected stress tensor Σ

relates linearly the force df that region A exerts onto re-
gion B to the vectorial length m ds of the projected cut
through

df = Σ · m ds . (1)

This defines the six components of the projected stress
tensor: Σij and Σzj , where i ∈ {x, y}.

To determine the projected stress tensor, we shall fol-
low the method presented in Ref. [29], which is based on
the principle of virtual work. Let us consider a monolayer
patch standing above a domain Ω of the reference plane.
This patch is supposed to be a closed system with fixed
total mass of each lipid species. Its free energy reads

F =

∫

Ω

d2r f̄ (ρ̄, φ, hi, hij) . (2)

For the sake of generality, we assume that, in addition
to the boundary forces (and torques) exerted by the rest
of the monolayer, this monolayer patch is submitted to
a distribution of external surface forces with projected
density w(x, y). Moreover, each lipid is assumed to be
submitted to a one-body potential energy vα(x, y) that
depends on the lipid species α ∈ {1, 2}; the corresponding
potential energy can be written as

Ep =

∫

Ω

d2r [vρ̄ + uρ̄φ] , (3)

where d2r = dx dy, v = v2/µ2 and u = v1/µ1 − v2/µ2

(µα denotes the mass of one lipid of the species α). At
equilibrium, the membrane shape h, as well as the lipid

density ρ̄ and composition φ are controlled by these ex-
ternal actions.

Let us study a small deformation of the monolayer
patch at equilibrium: Ω → Ω+δΩ, h → h+δh, ρ̄ → ρ̄+δρ̄
and φ → φ + δφ. Each element of the patch, initially at
position (x, y), undergoes a displacement δa(x, y), with
δaz = δh + hkδak [29]. The variation of the free energy
of the monolayer patch during the deformation reads

δF =

∫

Ω

d2r

[

∂f̄

∂ρ̄
δρ̄ +

∂f̄

∂φ
δφ +

∂f̄

∂hi
δhi +

∂f̄

∂hij
δhij

]

+

∫

δΩ

d2r f̄ , (4)

We now perform two integrations by parts, and we use
the relation

∫

δΩ

d2r =

∫

B
ds mi δai , (5)

where B denotes the boundary of Ω. Assuming that the
translation of the monolayer edges is performed at a fixed
orientation of its normal, so that δhj = −hjkδak along
the boundary [29], we obtain

δF =

∫

Ω

d2r

[

∂f̄

∂ρ̄
δρ̄ +

∂f̄

∂φ
δφ +

δF

δh
δh

]

+

∫

B
ds mi

{

f̄δai +

[

∂f̄

∂hi
− ∂j

∂f̄

∂hij

]

δaz (6)

+

[(

∂j
∂f̄

∂hij
−

∂f̄

∂hi

)

hk −
∂f̄

∂hij
hjk

]

δak

}

,

where

δF

δh
= ∂k∂j

∂f̄

∂hjk
− ∂j

∂f̄

∂hj
. (7)

The potential energy variation during the deformation is

δEp =

∫

Ω

d2r [(v + uφ) δρ̄ + uρ̄ δφ]

+

∫

B
ds mi δai [vρ̄ + uρ̄φ] . (8)

The total variation δF + δEp of the energy of the system
must be balanced by the work δW done by the surface
force density w and by the boundary forces exerted by
the rest of the membrane on our patch. Since the trans-
lation of the monolayer edges is performed at a fixed
orientation of its normal, the torques produce no work.
We may write

δW =

∫

Ω

d2r [wkδak + wzδaz]

+

∫

B
ds mi [Σkiδak + Σziδaz] . (9)

As the monolayer patch is considered as a closed sys-
tem, the total mass of each lipid species in the patch is
constant during our deformation:

∫

Ω

d2r ρ̄ = M and

∫

Ω

d2r ρ̄φ = M1, (10)

S = Sijeiflej + Szjezflej and the ‘‘projected’’ torque tensor (per

unit length) T = Tijeiflej + Tzjezflej in the fixed frame (x, y, z).

Here and in the following, Latin indices stand only for x or for

y. These tensors are defined as follows. Consider first an

infinitesimal cut of length d,9 in the membrane, separating two

regions (see Fig. 1). Consider, next, the projection of this

infinitesimal cut onto (x, y), of length d, and normal m

pointing towards the inside of region nu1. By virtue of

linearity, the infinitesimal force dw1A2 and the infinitesimal

torque dt1A2 that region nu1 exerts onto region nu2 through

the cut m d, (for a given membrane configuration) are given by

dw1A2 = S?m d, = eiSijmj d, + ezSzjmj d,, (2)

dt1A2 = T?m d, = eiTijmj d, + ezTzjmjd,. (3)

Summation over repeated indices will be implicit throughout.

Note that with the above sign convention, S can be considered

as a (tensorial) mechanical tension.

2.1 General derivation

Consider now a deformed membrane (weakly departing from a

plane), which is at equilibrium under the action of external

forces Q and external torques t acting along its edges (Fig. 1).

Let V be the domain of (x, y) above which the membrane

h(x, y) is defined and hV its border, of curvilinear abscissa s

and outer normal m. The membrane elastic free-energy has the

general form:

F~

ð

V
dxdyf (fLihg,fLiLkhg): (4)

Calling r = (x, y), we vary the membrane shape: h(r) A h9(r) =
h(r) + dh(r), arbitrarily, while translating the membrane edges

by da(r) = dai(r)ei + daz(r)ez (recall that Latin indices stand

only for x or y). We also apply to the borderline normal n an

infinitesimal rotation dv(r) = dvi(r)ei + dvz(r)ez. Integrating

twice by parts, the free-energy variation may be cast into the

form:

dF~

ð

V
dxdy

dF

dh
dhz

ð

LV
dsmi f daiz

Lf
L Lihð Þ

dh

"

z
Lf

L LiLkhð Þ Lkdh{Lk
Lf

L LiLkhð Þ

# $
dh

%
:

(5)

The border translation and rotation conditions imply ;r s
hV, h9(r + dai(r)ei) = h(r) + daz(r) and hkh9(r + dai(r)ei) = hkh(r)
2 ek,dv,(r) 2 dvz(r)ek,h,h(r), where ek, is the Levi-Civita

antisymmetric symbol. The latter relation follows from dn =

dv 6 n and n . ez 2 (hih)ei. Hence, to first order in dh, we
obtain the consistency relations at the border:

dh = daz 2 dajhjh (6)

hkdh = 2ek,dv, 2 dvzek,h,h 2 dajhjhkh. (7)

At equilibrium, the free-energy variation dF must be equal to

the external work dW, which implies

0~dF{dW~dF{

ð

LV
ds(Q:da z t:dv): (8)

Using eqn (5)–(8) and identifying the terms in factor of daj, daz,
dv, and dvz, which must vanish everywhere because of the

arbitrariness of the shape variation, we obtain Qj = miSji, Qz =
miSzi, t, = miT,i and tz = miTzi, yielding

Sij~f dij{
Lf

L Ljh
& ' Lih{

Lf
L LjLkh
& ' LiLkh

z Lk
Lf

L LjLkh
& '

 !

Lih,
(9)

Szj~
Lf

L Ljh
& '{Lk

Lf
L LjLkh
& ' , (10)

Tij~eik
Lf

L LjLkh
& ' , (11)

Tzj~{ek‘
Lf

L LjLkh
& ' L‘h, (12)

which constitute the formal expressions of the ‘‘projected’’

stress and torque tensors.

2.1.1 Stress-tensor divergence. Directly differentiating the

components of the stress tensor yields hjSzj = 2dF/dh and

hjSij = (hih)dF/dh, where dF/dh = 2hi[hf/h(hih)] + hihj[hf/
h(hihjh)] is the standard Euler–Lagrange term. We recognize in

fact the equation +?S = 2(dF/dh)n, since at lowest order, the

membrane normal is given by n . ez 2 (hih)ei. This equation
correctly states that the restoring elastic force density exerted

by the membrane is 2(dF/dh)n. This is indeed a well-known

starting point in dynamical descriptions. At equilibrium, since

dF/dh = 0, we obtain

hjSzj = hjSij = 0, (13)

i.e. the stress tensor is divergence-free.

Fig. 1 Configuration and notations used in the derivation of the

‘‘projected’’ stress and torque tensors. The membrane h(x, y) standing

above domain V is deformed and its edges are translated by da. The

deformed membrane, h(x, y) + dh(x, y), is drawn in transparency and

its projection onto the basal plane is shown. The force density Q acting

along the border and the force dw1A2 exchanged through the cut d,9
are shown (for the sake of clarity, the torques are not shown). In the

‘‘projected’’ formulation, the stress and torque tensors are defined with

respect to the projected cut m d, lying on the basal plane instead of the

actual cut d,9 lying within the membrane.
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where M and M1 are constants. Let us introduce two
constant Lagrange multipliers λ and µ to implement
these two global constraints. The relation δF + δEp −
δW + λδM + µδM1 = 0 must hold for any infinitesimal
deformation of the monolayer patch. The identification
of bulk terms in this relation yields

wz =
δF

δh
and wk = −hkwz , (11)

∂f̄

∂ρ̄
= −(v + λ) − (u + µ)φ , (12)

∂f̄

∂φ
= −(u + µ)ρ̄ . (13)

By identifying the boundary terms and using (12), we
obtain the components of the membrane stress tensor:

Σij =

(

f̄ − ρ̄
∂f̄

∂ρ̄

)

δij −
(

∂f̄

∂hj
− ∂k

∂f̄

∂hkj

)

hi

−
∂f̄

∂hkj
hki, (14)

Σzj =
∂f̄

∂hj
− ∂k

∂f̄

∂hkj
, (15)

which generalizes the result of Ref. [29] to the case where
there are inhomogeneities in ρ and φ. Note that the frac-
tion of each lipid species does not appear explicitly in
this result. Therefore, Eqs. (14)–(15) hold both for one-
component monolayers and for two-component monolay-
ers. Note also that Σ does not depend directly on the
external actions, which confirms its intrinsic nature.

Comparing our result with Ref. [29] shows that tak-
ing into account lipid density variations only changes
the isotropic term of the stress tensor, which now reads
f̄ − ρ̄ ∂f̄/∂ρ̄. This term is reminiscent of minus the
pressure of a two-dimensional homogeneous fluid bi-
nary mixture with area A described by a free energy
F (T, A, N1, N2) = Af(T, ρ, φ):

− P =
∂F

∂A

∣

∣

∣

∣

T,N1,N2

= f − ρ
∂f

∂ρ

∣

∣

∣

∣

T,φ

. (16)

While the last expression can be used locally in a non-
homogeneous fluid mixture, the case of the membrane is
more complex since its free energy depends on the curva-
ture. The “surface pressure” in a membrane is sometimes
defined as ρ ∂g/∂ρ − g where g is the part of the mem-
brane free-energy density f that depends only on ρ [30]
or, equivalently, what remains of f for a planar mem-
brane [31]. Interestingly, we find that the isotropic part
of the membrane stress tensor does not identify to minus
this surface pressure, since it is the complete, curvature-
dependent projected free-energy density f̄ that appears
in f̄ − ρ̄ ∂f̄/∂ρ̄.

The divergence of the stress tensor gives the force per
unit area, p, exerted by the rest of the monolayer on the
patch. By direct differentiation, we obtain:

pz = ∂jΣzj = −
δF

δh
, (17)

pi = ∂jΣij =
δF

δh
hi − ρ̄ ∂i

∂f̄

∂ρ̄
+

∂f̄

∂φ
∂iφ, (18)

where we have used ∂if = (∂f̄ /∂ρ̄)∂iρ̄ + (∂f̄ /∂φ)∂iφ +
(∂f̄/∂hj)hij +(∂f̄/∂hjk)hijk. At equilibrium, we can use
(11)–(13) to express p, which yields

pz = −wz, (19)

pi = −wi + ρ̄∂iv + ρ̄φ∂iu . (20)

These relations constitute the balance of surface force
densities for the monolayer at equilibrium. In particular,
p vanishes at equilibrium when the membrane is submit-
ted to no external actions (i.e. w = 0 and u = v = 0).

III. MONOLAYER MODEL

A. Free-energy density in terms of local variables

1. One-component monolayer

Let us derive the elastic free energy of a monolayer in
a bilayer from basic principles, first for a one-component
monolayer. We shall recover and extend the model of
Ref. [26], which is actually a local version of the ADE
model.

We assume that the free-energy density f per unit area
of the monolayer depends only on the mass density ρ and
on the local principal curvatures c1 and c2 of this mono-
layer. As in the previous section, the gradients of the cur-
vature and of the density are neglected in our description.
Note that, unlike f̄ and ρ̄, f and ρ are the free energy
and the mass per actual unit area of the monolayer, and
not per projected unit area. We use for both monolayers
the density and the principal curvatures defined on the
same surface S of the bilayer, so that the curvatures are
common to the two monolayers.

We will consider the physically relevant regime of cur-
vature radii much larger than the membrane thickness.
We will also restrict ourselves to small variations of the
density around a reference density ρ0. Note that it can
be convenient to take ρ0 different from the equilibrium
density ρeq of a plane monolayer with fixed total mass,
for instance to study a monolayer under tension. Let us
define

r =
ρ − ρ0

ρ0
= O (ε) , (21)

H = (c1 + c2) e = O (ε) , (22)

K = c1c2 e2 = O
(

ε2
)

, (23)

where e is a small length in the nanometer range that
allows to define the scaled total curvature H and the
scaled Gaussian curvature K. Since we typically expect
10−4 ≤ |r| ≤ 10−2 and 10−4 ≤ |ci e| ≤ 10−2, it is sensible
to assume that r and H are O(ε) while K is O

(

ε2
)

. The
free-energy density f is a function of these three non-
dimensional small variables.

Other terms due to the 
curved layer structure

Ordinary isotropic fluid term = pressure (or tension)

✤ Projected quantities (Monge)

h(x, y) ρ̄(x, y)

i, j ∈ {x, y}
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y

d!f = Σ · !m d"
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S = Sijeiflej + Szjezflej and the ‘‘projected’’ torque tensor (per

unit length) T = Tijeiflej + Tzjezflej in the fixed frame (x, y, z).

Here and in the following, Latin indices stand only for x or for

y. These tensors are defined as follows. Consider first an

infinitesimal cut of length d,9 in the membrane, separating two

regions (see Fig. 1). Consider, next, the projection of this

infinitesimal cut onto (x, y), of length d, and normal m

pointing towards the inside of region nu1. By virtue of

linearity, the infinitesimal force dw1A2 and the infinitesimal

torque dt1A2 that region nu1 exerts onto region nu2 through

the cut m d, (for a given membrane configuration) are given by

dw1A2 = S?m d, = eiSijmj d, + ezSzjmj d,, (2)

dt1A2 = T?m d, = eiTijmj d, + ezTzjmjd,. (3)

Summation over repeated indices will be implicit throughout.

Note that with the above sign convention, S can be considered

as a (tensorial) mechanical tension.

2.1 General derivation

Consider now a deformed membrane (weakly departing from a

plane), which is at equilibrium under the action of external

forces Q and external torques t acting along its edges (Fig. 1).

Let V be the domain of (x, y) above which the membrane

h(x, y) is defined and hV its border, of curvilinear abscissa s

and outer normal m. The membrane elastic free-energy has the

general form:

F~

ð

V
dxdyf (fLihg,fLiLkhg): (4)

Calling r = (x, y), we vary the membrane shape: h(r) A h9(r) =
h(r) + dh(r), arbitrarily, while translating the membrane edges

by da(r) = dai(r)ei + daz(r)ez (recall that Latin indices stand

only for x or y). We also apply to the borderline normal n an

infinitesimal rotation dv(r) = dvi(r)ei + dvz(r)ez. Integrating

twice by parts, the free-energy variation may be cast into the

form:

dF~

ð

V
dxdy

dF

dh
dhz

ð

LV
dsmi f daiz

Lf
L Lihð Þ

dh

"

z
Lf

L LiLkhð Þ Lkdh{Lk
Lf

L LiLkhð Þ

# $
dh

%
:

(5)

The border translation and rotation conditions imply ;r s
hV, h9(r + dai(r)ei) = h(r) + daz(r) and hkh9(r + dai(r)ei) = hkh(r)
2 ek,dv,(r) 2 dvz(r)ek,h,h(r), where ek, is the Levi-Civita

antisymmetric symbol. The latter relation follows from dn =

dv 6 n and n . ez 2 (hih)ei. Hence, to first order in dh, we
obtain the consistency relations at the border:

dh = daz 2 dajhjh (6)

hkdh = 2ek,dv, 2 dvzek,h,h 2 dajhjhkh. (7)

At equilibrium, the free-energy variation dF must be equal to

the external work dW, which implies

0~dF{dW~dF{

ð

LV
ds(Q:da z t:dv): (8)

Using eqn (5)–(8) and identifying the terms in factor of daj, daz,
dv, and dvz, which must vanish everywhere because of the

arbitrariness of the shape variation, we obtain Qj = miSji, Qz =
miSzi, t, = miT,i and tz = miTzi, yielding

Sij~f dij{
Lf

L Ljh
& ' Lih{

Lf
L LjLkh
& ' LiLkh

z Lk
Lf

L LjLkh
& '

 !

Lih,
(9)

Szj~
Lf
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& '{Lk

Lf
L LjLkh
& ' , (10)

Tij~eik
Lf

L LjLkh
& ' , (11)

Tzj~{ek‘
Lf

L LjLkh
& ' L‘h, (12)

which constitute the formal expressions of the ‘‘projected’’

stress and torque tensors.

2.1.1 Stress-tensor divergence. Directly differentiating the

components of the stress tensor yields hjSzj = 2dF/dh and

hjSij = (hih)dF/dh, where dF/dh = 2hi[hf/h(hih)] + hihj[hf/
h(hihjh)] is the standard Euler–Lagrange term. We recognize in

fact the equation +?S = 2(dF/dh)n, since at lowest order, the

membrane normal is given by n . ez 2 (hih)ei. This equation
correctly states that the restoring elastic force density exerted

by the membrane is 2(dF/dh)n. This is indeed a well-known

starting point in dynamical descriptions. At equilibrium, since

dF/dh = 0, we obtain

hjSzj = hjSij = 0, (13)

i.e. the stress tensor is divergence-free.

Fig. 1 Configuration and notations used in the derivation of the

‘‘projected’’ stress and torque tensors. The membrane h(x, y) standing

above domain V is deformed and its edges are translated by da. The

deformed membrane, h(x, y) + dh(x, y), is drawn in transparency and

its projection onto the basal plane is shown. The force density Q acting

along the border and the force dw1A2 exchanged through the cut d,9
are shown (for the sake of clarity, the torques are not shown). In the

‘‘projected’’ formulation, the stress and torque tensors are defined with

respect to the projected cut m d, lying on the basal plane instead of the

actual cut d,9 lying within the membrane.
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is known as the Helfrich Hamiltonian [19]. The integral in Eq. (2) is a surface integral
over the area A of the bilayer midsurface. Note that we do not include any Gaussian
curvature term in this free energy. Indeed, the topology of the vesicle is not affected
by the instability we wish to study, so that the integral of the Gaussian curvature,
and thus its contribution to F , remains constant by virtue of the Gauss-Bonnet
theorem [20].

To account for the bilayer structure of the membrane, its free-energy density f
can be written as the sum of the free-energy densities of the two monolayers, which will
be noted f+ and f−. Since the curvature c is defined on the bilayer midsurface, it is
the same for both monolayers. Furthermore, we assume that the two monolayers
have the same lipid composition before the onset of the instability, so that they
have identical tensions and bending rigidities. They also have opposite spontaneous
curvatures, noted ±c0, since the lipids in the two monolayers are oriented in opposite
directions: their hydrophilic heads are oriented towards the exterior of the bilayer,
while their hydrophobic tails are oriented towards the interior of the bilayer. To study
our instability, it is necessary to take into account the inhomogeneities in the lipid
mass densities ρ± defined on the bilayer midsurface in each monolayer. Defining the
scaled densities r± = (ρ± − ρ0)/ρ0, where ρ0 is a reference density, which is chosen
identical for both monolayers, we may write [21]

f± =
σ0

2
+

κ

4
c2 ± κc0

2
c +

k

2
(
r± ± ec

)2
. (3)

In this formula, k is the stretching elastic constant of a monolayer, which is the same
for both monolayers as they are identical, and e denotes the distance between the
neutral surfaces of the monolayers [22] and the midsurface of the bilayer. Indeed, the
scaled densities in each monolayer at a distance e from the bilayer midsurface are
r±n = r± ± ec at first order in the small variable ec, so that if f± is written in terms
of the curvature and r±n = (ρ±n − ρ0)/ρ0, these two variables are decoupled. Such a
decoupling between deformations where only the curvature is modified (bending) and
deformations in which only the density is affected (stretching) is characteristic of the
neutral surface [22]. We choose the sign convention for the curvature in such a way
that a spherical vesicle has c < 0. Then the monolayer denoted “+” in Eq. (3) is the
outer monolayer.

The expression (3) of the free-energy density of a monolayer is a general second-
order expansion around a reference state characterized by a flat shape (c = 0) and a
uniform density ρ± = ρ0 [23]. It is valid for small deformations around this reference
state: r± = O(ε) and ec = O(ε), where ε is a small nondimensional parameter
characterizing the deformation.

If the densities on the neutral surfaces, ρ±n , are both equal to the reference value
ρ0, summing the monolayer free-energy densities f± in (3) gives back the standard
free-energy density (1) of the bilayer: f = f+ + f−. Note that we find cb

0 = 0
for the spontaneous curvature of the bilayer, since we have considered two identical
monolayers.

4.2. Modification of the free energy due to a local pH change

In the experiment, when the pipette expels the NaOH solution close to the GUV, it
induces a local increase of the pH, which affects the head groups of the phospholipids
forming the membrane, as explained in Sec. 3. As some of these head groups become
more negatively charged during this modification, the preferred area per lipid head

r =
ρ− ρ0

ρ0

Stress tensor normal components

Force density

c = ∇2h +O(ε2)
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S = Sijeiflej + Szjezflej and the ‘‘projected’’ torque tensor (per

unit length) T = Tijeiflej + Tzjezflej in the fixed frame (x, y, z).

Here and in the following, Latin indices stand only for x or for

y. These tensors are defined as follows. Consider first an

infinitesimal cut of length d,9 in the membrane, separating two

regions (see Fig. 1). Consider, next, the projection of this

infinitesimal cut onto (x, y), of length d, and normal m

pointing towards the inside of region nu1. By virtue of

linearity, the infinitesimal force dw1A2 and the infinitesimal

torque dt1A2 that region nu1 exerts onto region nu2 through

the cut m d, (for a given membrane configuration) are given by

dw1A2 = S?m d, = eiSijmj d, + ezSzjmj d,, (2)

dt1A2 = T?m d, = eiTijmj d, + ezTzjmjd,. (3)

Summation over repeated indices will be implicit throughout.

Note that with the above sign convention, S can be considered

as a (tensorial) mechanical tension.

2.1 General derivation

Consider now a deformed membrane (weakly departing from a

plane), which is at equilibrium under the action of external

forces Q and external torques t acting along its edges (Fig. 1).

Let V be the domain of (x, y) above which the membrane

h(x, y) is defined and hV its border, of curvilinear abscissa s

and outer normal m. The membrane elastic free-energy has the

general form:

F~

ð

V
dxdyf (fLihg,fLiLkhg): (4)

Calling r = (x, y), we vary the membrane shape: h(r) A h9(r) =
h(r) + dh(r), arbitrarily, while translating the membrane edges

by da(r) = dai(r)ei + daz(r)ez (recall that Latin indices stand

only for x or y). We also apply to the borderline normal n an

infinitesimal rotation dv(r) = dvi(r)ei + dvz(r)ez. Integrating

twice by parts, the free-energy variation may be cast into the

form:

dF~
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The border translation and rotation conditions imply ;r s
hV, h9(r + dai(r)ei) = h(r) + daz(r) and hkh9(r + dai(r)ei) = hkh(r)
2 ek,dv,(r) 2 dvz(r)ek,h,h(r), where ek, is the Levi-Civita

antisymmetric symbol. The latter relation follows from dn =

dv 6 n and n . ez 2 (hih)ei. Hence, to first order in dh, we
obtain the consistency relations at the border:

dh = daz 2 dajhjh (6)

hkdh = 2ek,dv, 2 dvzek,h,h 2 dajhjhkh. (7)

At equilibrium, the free-energy variation dF must be equal to

the external work dW, which implies

0~dF{dW~dF{

ð

LV
ds(Q:da z t:dv): (8)

Using eqn (5)–(8) and identifying the terms in factor of daj, daz,
dv, and dvz, which must vanish everywhere because of the

arbitrariness of the shape variation, we obtain Qj = miSji, Qz =
miSzi, t, = miT,i and tz = miTzi, yielding
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which constitute the formal expressions of the ‘‘projected’’

stress and torque tensors.

2.1.1 Stress-tensor divergence. Directly differentiating the

components of the stress tensor yields hjSzj = 2dF/dh and

hjSij = (hih)dF/dh, where dF/dh = 2hi[hf/h(hih)] + hihj[hf/
h(hihjh)] is the standard Euler–Lagrange term. We recognize in

fact the equation +?S = 2(dF/dh)n, since at lowest order, the

membrane normal is given by n . ez 2 (hih)ei. This equation
correctly states that the restoring elastic force density exerted

by the membrane is 2(dF/dh)n. This is indeed a well-known

starting point in dynamical descriptions. At equilibrium, since

dF/dh = 0, we obtain

hjSzj = hjSij = 0, (13)

i.e. the stress tensor is divergence-free.

Fig. 1 Configuration and notations used in the derivation of the

‘‘projected’’ stress and torque tensors. The membrane h(x, y) standing

above domain V is deformed and its edges are translated by da. The

deformed membrane, h(x, y) + dh(x, y), is drawn in transparency and

its projection onto the basal plane is shown. The force density Q acting

along the border and the force dw1A2 exchanged through the cut d,9
are shown (for the sake of clarity, the torques are not shown). In the

‘‘projected’’ formulation, the stress and torque tensors are defined with

respect to the projected cut m d, lying on the basal plane instead of the

actual cut d,9 lying within the membrane.
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is known as the Helfrich Hamiltonian [19]. The integral in Eq. (2) is a surface integral
over the area A of the bilayer midsurface. Note that we do not include any Gaussian
curvature term in this free energy. Indeed, the topology of the vesicle is not affected
by the instability we wish to study, so that the integral of the Gaussian curvature,
and thus its contribution to F , remains constant by virtue of the Gauss-Bonnet
theorem [20].

To account for the bilayer structure of the membrane, its free-energy density f
can be written as the sum of the free-energy densities of the two monolayers, which will
be noted f+ and f−. Since the curvature c is defined on the bilayer midsurface, it is
the same for both monolayers. Furthermore, we assume that the two monolayers
have the same lipid composition before the onset of the instability, so that they
have identical tensions and bending rigidities. They also have opposite spontaneous
curvatures, noted ±c0, since the lipids in the two monolayers are oriented in opposite
directions: their hydrophilic heads are oriented towards the exterior of the bilayer,
while their hydrophobic tails are oriented towards the interior of the bilayer. To study
our instability, it is necessary to take into account the inhomogeneities in the lipid
mass densities ρ± defined on the bilayer midsurface in each monolayer. Defining the
scaled densities r± = (ρ± − ρ0)/ρ0, where ρ0 is a reference density, which is chosen
identical for both monolayers, we may write [21]

f± =
σ0

2
+

κ

4
c2 ± κc0

2
c +

k

2
(
r± ± ec

)2
. (3)

In this formula, k is the stretching elastic constant of a monolayer, which is the same
for both monolayers as they are identical, and e denotes the distance between the
neutral surfaces of the monolayers [22] and the midsurface of the bilayer. Indeed, the
scaled densities in each monolayer at a distance e from the bilayer midsurface are
r±n = r± ± ec at first order in the small variable ec, so that if f± is written in terms
of the curvature and r±n = (ρ±n − ρ0)/ρ0, these two variables are decoupled. Such a
decoupling between deformations where only the curvature is modified (bending) and
deformations in which only the density is affected (stretching) is characteristic of the
neutral surface [22]. We choose the sign convention for the curvature in such a way
that a spherical vesicle has c < 0. Then the monolayer denoted “+” in Eq. (3) is the
outer monolayer.

The expression (3) of the free-energy density of a monolayer is a general second-
order expansion around a reference state characterized by a flat shape (c = 0) and a
uniform density ρ± = ρ0 [23]. It is valid for small deformations around this reference
state: r± = O(ε) and ec = O(ε), where ε is a small nondimensional parameter
characterizing the deformation.

If the densities on the neutral surfaces, ρ±n , are both equal to the reference value
ρ0, summing the monolayer free-energy densities f± in (3) gives back the standard
free-energy density (1) of the bilayer: f = f+ + f−. Note that we find cb

0 = 0
for the spontaneous curvature of the bilayer, since we have considered two identical
monolayers.

4.2. Modification of the free energy due to a local pH change

In the experiment, when the pipette expels the NaOH solution close to the GUV, it
induces a local increase of the pH, which affects the head groups of the phospholipids
forming the membrane, as explained in Sec. 3. As some of these head groups become
more negatively charged during this modification, the preferred area per lipid head

r =
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Dynamics of structureless membranes

1. Review of elasticity & Dynamics

pz(q) = −(σ0q
2 + κq4)hq

Tzz(q) = −4ηq
dhq

dt

τR =
4η

σ0q + κq3

✤ Relaxation time

✤ Valid if             at 
intermediate lengthscales 
(inter-monolayer friction).

h(x, y, t)

σ = 10−9 J/m2 → [10 µm, 3000 µm]
σ = 10−8 J/m2 → [10µm, 300 µm]
σ = 10−7 J/m2 → never valid

τR ! 10 s at λ = 150µm

p+
z = ∂jΣ+

zj =
σ0

2
∇2h− κ

2
∇4h− ke∇2

(
r + e∇2h

)
+O(ε2)
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In-plane dynamics in a flat membrane
(symmetric mode)

1. Review of elasticity & Dynamics

p+
i = ∂jΣ+

ij = −k ∂i

(
r + e∇2h

)
+O(ε2)

−η2q
2vq −ikqrq

−2ηqvq

drq

dt
+ iqvq = 0

τ s
R =

η2 + 2η/q

k

✤ Crossover in the       rangeµm

τ s
R ≈ 10 ns

✤ Relaxation of a SYMMETRIC
density modulation in a FLAT MEMBRANE
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In-plane dynamics in a flat membrane
(anti-symmetric mode)

1. Review of elasticity & Dynamics

✤ Relaxation of an ANTI-SYMMETRIC 
density modulation in a FLAT MEMBRANE

τa
R =

η2 + 2η/q + 2b/q2

k

−2ηqv+
q −η2q

2v+
q −ikqr+

q

−b(v+
q − v−q )

dr±q
dt

+ iqv±q = 0

p+
i = ∂jΣ+

ij = −k ∂i(r+ + e∇2h) +O(ε2)

τa
R ≈ 10 s at λ = 150µm
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Complete dynamics

1. Review of elasticity & Dynamics

−ikq(r±q ∓ eq2hq)

−2ηqv±q

−η2q
2v±q

−(σ0q
2 + κq4)hq + keq2(r+

q − r−q − 2eq2hq)

−4ηq
dhq

dt

λ[µm]

τR[s]

τR =
4η

σ0q + κq3

U. Seifert & S. A. Langer (1993)

σ ! 10−8 J/m2

∓b(v+
q − v−q )

dr±q
dt

+ iqv±q = 0
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membranes and monolayers.

2. Experiment by M. I. Angelova, N. Puff et al.

3. Theory of the curvature instability caused by a 
local modification of the lipids of one of the 
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4. Comparison with the pH-micropipette experiment 
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2. Experiment

Giant vesicle (GUV)
Produced by electroformation,

mixture of EYPC/PS 90:10,
25°C, buffer at pH 7.4

Experimental setup

Micropipette ∅0.3 µm
NaOH Solution 1M pH 13

pH 8-9

pH 7.4

N. Khalifat, N. Puff, M. I. Angelova (2008)
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2. Experiment

Curvature instability

fast approach

beginning
of injection

injection (~2s)

end of
injection

slow relaxation
 (~10s)

N. Khalifat, N. Puff, M. I. Angelova (2008)
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3. Theory of the instability

Local monolayer lipid modification?

✤ No molecular insertion. Only a local 
change of solvent environment.
 

✤ Not hydrodynamic (buffer alone nothing)
✤ Specific of OH- (NaCl not). Effect of pH?

✤ Amino NH3
+ group of PS head 

deprotonates at high pH (pKa~9.8). 
Positively charged trimethylammonium group 
of PC head associates with OH- at high pH 
(pKa

eff~11).

Dynamical membrane curvature instability controlled by intermonolayer friction 13

4.7. Qualitative picture of the dynamics in two limiting cases

In Sec. 4.4, we have shown that it is physically different to change locally the plane-
shape equilibrium density and to change locally the spontaneous curvature. Now that
we have studied the dynamics of the instability, we are going to analyze the difference
between these two effects. Although both of them occur in the generic case (see
Sec. 4.4), we are going to study the two limiting cases when only one of these changes
occurs.

Let us first introduce a schematic representation of lipids, which takes into account
the preferred area per lipid on the neutral surface, which is (by definition) independent
of the membrane curvature, and their preferred curvature (see Fig 3). The preferred
shape of a lipid is represented by a cone, superimposed on the lipid. The area per
lipid on the neutral surface (within the monolayer) is symbolized by the upper surface
of this cone, while its preferred curvature is symbolized by the angle of this cone.

Figure 3. First lipid (light grey): non-modified lipid. The length !n represents
the preferred diameter per lipid on the neutral surface, while the angle α quantifies
the preferred curvature. Second and third lipids (dark grey or brown): modified
lipids. For the second lipid, the modification affects only the preferred density
on the neutral surface, but not the preferred curvature. It is the contrary for the
third lipid.

4.7.1. Dynamics in the case where c̄0 = 0 We are first going to study the dynamics of
the relaxation in the case where c̄0 = 0. The interest of studying this theoretical case is
to show how modifying the plane-shape equilibrium density and not the spontaneous
curvature can induce a transient shape instability.

Let us consider simple initial conditions at t = 0: r̄q(0) = r̂q(0) = hq(0) = 0.
This corresponds to the idealized case where the injection of the NaOH solution is
local in time: then, following (SH1), we have φ(r, t) = 0 for t < 0 and φ(r, t) = φ(r)
for t ≥ 0. At t = 0, the preferred area per lipid suddenly increases for the lipids of the
external monolayer that are chemically modified, since we expect their extra negative
charge to increase repulsion. Thus, these modified lipids are effectively compressed
(see Fig. 4(b)).

Since the coupled dynamics of r̂q and hq is much slower than the dynamics of
r̄q, we may consider that at t = 0+, the equilibrium state r̄q(0+) = σ1φq/k has been
reached, while r̂q(0+) = 0 still holds, so r±q (0+) = 1

2σ1φq/k. This means that after
an infinitesimal time, half the compression of the lipids of the external monolayer is
relaxed. However, the flow of the lipids of the external monolayer has dragged the
lipids of the inner monolayer, because of the intermonolayer friction, thus inducing a
dilation equal to the compression in the external monolayer (see Fig. 4(c)).

Increased
negative charge 
of head group

OH-

PC/PS 90:10

pH 7.4

pH 8-10 pH 13 φ! 1
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3. Theory of the instability

Local monolayer lipid modification
Dynamical membrane curvature instability controlled by intermonolayer friction 13

4.7. Qualitative picture of the dynamics in two limiting cases

In Sec. 4.4, we have shown that it is physically different to change locally the plane-
shape equilibrium density and to change locally the spontaneous curvature. Now that
we have studied the dynamics of the instability, we are going to analyze the difference
between these two effects. Although both of them occur in the generic case (see
Sec. 4.4), we are going to study the two limiting cases when only one of these changes
occurs.

Let us first introduce a schematic representation of lipids, which takes into account
the preferred area per lipid on the neutral surface, which is (by definition) independent
of the membrane curvature, and their preferred curvature (see Fig 3). The preferred
shape of a lipid is represented by a cone, superimposed on the lipid. The area per
lipid on the neutral surface (within the monolayer) is symbolized by the upper surface
of this cone, while its preferred curvature is symbolized by the angle of this cone.

Figure 3. First lipid (light grey): non-modified lipid. The length !n represents
the preferred diameter per lipid on the neutral surface, while the angle α quantifies
the preferred curvature. Second and third lipids (dark grey or brown): modified
lipids. For the second lipid, the modification affects only the preferred density
on the neutral surface, but not the preferred curvature. It is the contrary for the
third lipid.

4.7.1. Dynamics in the case where c̄0 = 0 We are first going to study the dynamics of
the relaxation in the case where c̄0 = 0. The interest of studying this theoretical case is
to show how modifying the plane-shape equilibrium density and not the spontaneous
curvature can induce a transient shape instability.

Let us consider simple initial conditions at t = 0: r̄q(0) = r̂q(0) = hq(0) = 0.
This corresponds to the idealized case where the injection of the NaOH solution is
local in time: then, following (SH1), we have φ(r, t) = 0 for t < 0 and φ(r, t) = φ(r)
for t ≥ 0. At t = 0, the preferred area per lipid suddenly increases for the lipids of the
external monolayer that are chemically modified, since we expect their extra negative
charge to increase repulsion. Thus, these modified lipids are effectively compressed
(see Fig. 4(b)).

Since the coupled dynamics of r̂q and hq is much slower than the dynamics of
r̄q, we may consider that at t = 0+, the equilibrium state r̄q(0+) = σ1φq/k has been
reached, while r̂q(0+) = 0 still holds, so r±q (0+) = 1

2σ1φq/k. This means that after
an infinitesimal time, half the compression of the lipids of the external monolayer is
relaxed. However, the flow of the lipids of the external monolayer has dragged the
lipids of the inner monolayer, because of the intermonolayer friction, thus inducing a
dilation equal to the compression in the external monolayer (see Fig. 4(c)).

✤ A fraction            of the 
lipids of the outer monolayer 
are chemically modified.

✤ Depends on the local time-
dependent pH.

φ! 1

DOH− ∼ 5× 103 µm2/s

DOH−

???        OK
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is known as the Helfrich Hamiltonian [19]. The integral in Eq. (2) is a surface integral
over the area A of the bilayer midsurface. Note that we do not include any Gaussian
curvature term in this free energy. Indeed, the topology of the vesicle is not affected
by the instability we wish to study, so that the integral of the Gaussian curvature,
and thus its contribution to F , remains constant by virtue of the Gauss-Bonnet
theorem [20].

To account for the bilayer structure of the membrane, its free-energy density f
can be written as the sum of the free-energy densities of the two monolayers, which will
be noted f+ and f−. Since the curvature c is defined on the bilayer midsurface, it is
the same for both monolayers. Furthermore, we assume that the two monolayers
have the same lipid composition before the onset of the instability, so that they
have identical tensions and bending rigidities. They also have opposite spontaneous
curvatures, noted ±c0, since the lipids in the two monolayers are oriented in opposite
directions: their hydrophilic heads are oriented towards the exterior of the bilayer,
while their hydrophobic tails are oriented towards the interior of the bilayer. To study
our instability, it is necessary to take into account the inhomogeneities in the lipid
mass densities ρ± defined on the bilayer midsurface in each monolayer. Defining the
scaled densities r± = (ρ± − ρ0)/ρ0, where ρ0 is a reference density, which is chosen
identical for both monolayers, we may write [21]

f± =
σ0

2
+

κ

4
c2 ± κc0

2
c +

k

2
(
r± ± ec

)2
. (3)

In this formula, k is the stretching elastic constant of a monolayer, which is the same
for both monolayers as they are identical, and e denotes the distance between the
neutral surfaces of the monolayers [22] and the midsurface of the bilayer. Indeed, the
scaled densities in each monolayer at a distance e from the bilayer midsurface are
r±n = r± ± ec at first order in the small variable ec, so that if f± is written in terms
of the curvature and r±n = (ρ±n − ρ0)/ρ0, these two variables are decoupled. Such a
decoupling between deformations where only the curvature is modified (bending) and
deformations in which only the density is affected (stretching) is characteristic of the
neutral surface [22]. We choose the sign convention for the curvature in such a way
that a spherical vesicle has c < 0. Then the monolayer denoted “+” in Eq. (3) is the
outer monolayer.

The expression (3) of the free-energy density of a monolayer is a general second-
order expansion around a reference state characterized by a flat shape (c = 0) and a
uniform density ρ± = ρ0 [23]. It is valid for small deformations around this reference
state: r± = O(ε) and ec = O(ε), where ε is a small nondimensional parameter
characterizing the deformation.

If the densities on the neutral surfaces, ρ±n , are both equal to the reference value
ρ0, summing the monolayer free-energy densities f± in (3) gives back the standard
free-energy density (1) of the bilayer: f = f+ + f−. Note that we find cb

0 = 0
for the spontaneous curvature of the bilayer, since we have considered two identical
monolayers.

4.2. Modification of the free energy due to a local pH change

In the experiment, when the pipette expels the NaOH solution close to the GUV, it
induces a local increase of the pH, which affects the head groups of the phospholipids
forming the membrane, as explained in Sec. 3. As some of these head groups become
more negatively charged during this modification, the preferred area per lipid head

Bilayer curvature—density elasticity

3. Theory of the instability
Dynamical membrane curvature instability controlled by intermonolayer friction 13

4.7. Qualitative picture of the dynamics in two limiting cases

In Sec. 4.4, we have shown that it is physically different to change locally the plane-
shape equilibrium density and to change locally the spontaneous curvature. Now that
we have studied the dynamics of the instability, we are going to analyze the difference
between these two effects. Although both of them occur in the generic case (see
Sec. 4.4), we are going to study the two limiting cases when only one of these changes
occurs.

Let us first introduce a schematic representation of lipids, which takes into account
the preferred area per lipid on the neutral surface, which is (by definition) independent
of the membrane curvature, and their preferred curvature (see Fig 3). The preferred
shape of a lipid is represented by a cone, superimposed on the lipid. The area per
lipid on the neutral surface (within the monolayer) is symbolized by the upper surface
of this cone, while its preferred curvature is symbolized by the angle of this cone.

Figure 3. First lipid (light grey): non-modified lipid. The length !n represents
the preferred diameter per lipid on the neutral surface, while the angle α quantifies
the preferred curvature. Second and third lipids (dark grey or brown): modified
lipids. For the second lipid, the modification affects only the preferred density
on the neutral surface, but not the preferred curvature. It is the contrary for the
third lipid.

4.7.1. Dynamics in the case where c̄0 = 0 We are first going to study the dynamics of
the relaxation in the case where c̄0 = 0. The interest of studying this theoretical case is
to show how modifying the plane-shape equilibrium density and not the spontaneous
curvature can induce a transient shape instability.

Let us consider simple initial conditions at t = 0: r̄q(0) = r̂q(0) = hq(0) = 0.
This corresponds to the idealized case where the injection of the NaOH solution is
local in time: then, following (SH1), we have φ(r, t) = 0 for t < 0 and φ(r, t) = φ(r)
for t ≥ 0. At t = 0, the preferred area per lipid suddenly increases for the lipids of the
external monolayer that are chemically modified, since we expect their extra negative
charge to increase repulsion. Thus, these modified lipids are effectively compressed
(see Fig. 4(b)).

Since the coupled dynamics of r̂q and hq is much slower than the dynamics of
r̄q, we may consider that at t = 0+, the equilibrium state r̄q(0+) = σ1φq/k has been
reached, while r̂q(0+) = 0 still holds, so r±q (0+) = 1

2σ1φq/k. This means that after
an infinitesimal time, half the compression of the lipids of the external monolayer is
relaxed. However, the flow of the lipids of the external monolayer has dragged the
lipids of the inner monolayer, because of the intermonolayer friction, thus inducing a
dilation equal to the compression in the external monolayer (see Fig. 4(c)).

How far is      from the equilibrium density ? Let us miminizes the 

free energy per unit mass             for the flat membrane (c=0) :

: reference density, andρ0 r+ = (ρ+ − ρ0)/ρ0

Determinant of the spontaneous curvature :        (obvious) c0

ρ0

f+/ρ+

r+
eq =

σ0/2
k

A.-F. Bitbol, L. Peliti & J.-B. Fournier (2010)
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group increases locally. Pursuing the analysis of Ref. [16], we call φ(r, t) the fraction
of the lipids of the external monolayer that are chemically modified by the local pH
increase in the experiment. Since the pH on the membrane should never exceed 9, this
fraction should remain very small (see the pKa values in Sec. 3), so we may assume
φ = O(ε). Besides, we assume that the inner monolayer is not affected by the outside
solution, which is reasonable because the membrane is not significantly permeable to
water (or hydroxide ions) on the time scale of the experiment.

Since the characteristic timescale of an acido-basic reaction is determined by the
diffusion time of the reactants [24], we can consider that φ(r, t) follows instantaneously
the pH field outside the vesicle. The hydroxide ions diffuse in the buffer solution with
a diffusion coefficient DOH− ≈ 5×103 µm2/s [25]. Thus, in the typical 5 s of relaxation
of the membrane deformation, they diffuse on a length of approximatively 1.5×102 µm.
This length is larger than the width of the instability and comparable with the size of
the GUV. Besides, the pH field is probably also affected by the advection created by
the flux coming from the micropipette, then by its retraction and last by the movement
of the membrane. However, the central zone of the instability remains in contact with
the zone of highest pH. At present, we have no knowledge of this time-dependent pH
field beyond these rough estimates. Hence, to simplify, we are going to assume that
φ(r, t) does not evolve significantly during the time of the instability. More precisely,
we make the simplifying hypothesis that φ(r) is time-independent after the end of the
injection (t = 0):

(SH1) φ(r, t) = φ(r) for t ≥ 0.

A priori, the constitutive constants of monolayer “+” are all affected by the
chemical modification, i.e., they depend on φ(r). However, since we focus on small
deformations around the flat shape and the uniform density ρ+ = ρ0, we can write to
second order in ε:

f+ =
σ0

2
+ σ1φ +

σ2

2
φ2 + σ̃

(
1 + r+

)
φ lnφ +

κ

4
c2 +

κ

2
(c0 + c̃0φ) c

+
k

2
(
r+ + ec

)2
. (4)

With respect to expression (3), the monolayer tension and spontaneous curvature of
monolayer “+” have been modified according to

σ0

2
→ σ0

2
+ σ1φ +

σ2

2
φ2 + σ̃(1 + r+)φ lnφ , (5)

c0 → c0 + c̃0φ . (6)

The change of the other constitutive constants (k, κ and e) is irrelevant as far as
the free-energy density at second order is concerned. We have assumed that the
constitutive constants were analytical functions of φ, apart from the σ̃(1 + r+)φ lnφ
term, which corresponds to a mixing entropy term [23].

4.3. Force density in the membrane

The force density in each monolayer of a bilayer with lipid density and composition
inhomogeneities described by the free-energy densities (3)–(4) has been derived in
Ref. [23]. It reads to first order in ε

p+
i = − k ∂i

(
r+ + ec− σ1

k
φ
)

, (7)

p−i = − k ∂i

(
r− − ec

)
, (8)

Bilayer curvature—density elasticity
For a two-component monolayer

A.-F. Bitbol, L. Peliti & J.-B. Fournier (2010)

φ! 1The monolayer includes a fraction             of other lipids 
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4.7. Qualitative picture of the dynamics in two limiting cases

In Sec. 4.4, we have shown that it is physically different to change locally the plane-
shape equilibrium density and to change locally the spontaneous curvature. Now that
we have studied the dynamics of the instability, we are going to analyze the difference
between these two effects. Although both of them occur in the generic case (see
Sec. 4.4), we are going to study the two limiting cases when only one of these changes
occurs.

Let us first introduce a schematic representation of lipids, which takes into account
the preferred area per lipid on the neutral surface, which is (by definition) independent
of the membrane curvature, and their preferred curvature (see Fig 3). The preferred
shape of a lipid is represented by a cone, superimposed on the lipid. The area per
lipid on the neutral surface (within the monolayer) is symbolized by the upper surface
of this cone, while its preferred curvature is symbolized by the angle of this cone.

Figure 3. First lipid (light grey): non-modified lipid. The length !n represents
the preferred diameter per lipid on the neutral surface, while the angle α quantifies
the preferred curvature. Second and third lipids (dark grey or brown): modified
lipids. For the second lipid, the modification affects only the preferred density
on the neutral surface, but not the preferred curvature. It is the contrary for the
third lipid.

4.7.1. Dynamics in the case where c̄0 = 0 We are first going to study the dynamics of
the relaxation in the case where c̄0 = 0. The interest of studying this theoretical case is
to show how modifying the plane-shape equilibrium density and not the spontaneous
curvature can induce a transient shape instability.

Let us consider simple initial conditions at t = 0: r̄q(0) = r̂q(0) = hq(0) = 0.
This corresponds to the idealized case where the injection of the NaOH solution is
local in time: then, following (SH1), we have φ(r, t) = 0 for t < 0 and φ(r, t) = φ(r)
for t ≥ 0. At t = 0, the preferred area per lipid suddenly increases for the lipids of the
external monolayer that are chemically modified, since we expect their extra negative
charge to increase repulsion. Thus, these modified lipids are effectively compressed
(see Fig. 4(b)).

Since the coupled dynamics of r̂q and hq is much slower than the dynamics of
r̄q, we may consider that at t = 0+, the equilibrium state r̄q(0+) = σ1φq/k has been
reached, while r̂q(0+) = 0 still holds, so r±q (0+) = 1

2σ1φq/k. This means that after
an infinitesimal time, half the compression of the lipids of the external monolayer is
relaxed. However, the flow of the lipids of the external monolayer has dragged the
lipids of the inner monolayer, because of the intermonolayer friction, thus inducing a
dilation equal to the compression in the external monolayer (see Fig. 4(c)).

Dynamical membrane curvature instability controlled by intermonolayer friction 8

pn = σ0c− κ̃∆c− ke ∆
(
r+ − r−

)
− κc̃0

2
∆φ

= σ0c− κ̃∆c− ke ∆
(
r+ − r− − σ1

k
φ
)
− κc̄0

2
∆φ , (9)

where p±i is the force density in monolayer “±” acting in a direction i tangential to
the membrane, while pn = p+

n +p−n is the total normal force density in the membrane.
In these formulas, we have defined the constants κ̃ = κ + 2ke2 and c̄0 = c̃0 + 2σ1e/κ.
The symbol ∂i denotes partial derivation in the direction i, while ∆ is the covariant
Laplacian operator.

Let us discuss the terms depending on φ in the force densities. For a given
composition φ(r), the equilibrium density of a plane monolayer with fixed total mass
is obtained by minimizing the free energy per unit mass f±/ρ± for c = 0. Considering
a fixed total mass is justified here since the timescales of our instability are much
shorter than the flip-flop characteristic time. For monolayer “+”, this gives at first
order in ε

r+
eq(φ) ≡

ρ+
eq(φ)− ρ0

ρ0
=

σ0/2 + σ1φ

k
, (10)

where we have used the fact that σ0 # k. Thus, the chemical modification changes
the scaled equilibrium density of the plane monolayer “+” by the amount

δr+
eq = r+

eq(φ)− r+
eq(0) =

σ1

k
φ . (11)

We observe that this change of the plane-shape equilibrium density appears in the
force densities (7) and (9), which is in agreement with the simpler theory of Ref. [16].

Let us now focus on the term − 1
2κc̄0∆φ in (9), which comes from the chemical

modification too, but which is not related to the change of the plane-shape equilibrium
density. The membrane is at mechanical equilibrium if the force density vanishes. It
can be seen from (7) and (9) that the flat shape c = 0 is a solution to p = 0 at a
given inhomogeneous φ(r) only if c̄0 = 0. Thus, c̄0φ (and not c̃0φ) represents the
actual change of the spontaneous curvature of monolayer “+” caused by the chemical
modification.

4.4. Change of the spontaneous curvature and of the equilibrium density

While it is well understood that affecting the local spontaneous curvature of a bilayer
membrane may result in shape or budding instabilities [26, 27, 28], little is known
about the consequences of affecting locally the plane-shape equilibrium density in
one monolayer of a bilayer. As can be seen from Eq. (9), changing the plane-
shape equilibrium density of the lipids produces a destabilizing normal force per
membrane unit area δp(1)

n = eσ1∆φ, while changing the spontaneous curvature yields
δp(2)

n = − 1
2κc̄0∆φ. Thus, both of these changes should induce a shape or budding

instability.
In the case where only the equilibrium density is affected, which corresponds to

σ1 $= 0 and c̄0 = 0, the budding should vanish as soon as the lipid density has relaxed
to its new equilibrium value, even if the modified lipids remain in place. Indeed, if
r− is homogeneous, and if r+(r) reaches r+

eq(r) (defined in Eq. (10)), the equilibrium
condition pn = p±i = 0 is satisfied for c = 0, which means that the flat shape is an
equilibrium shape. On the contrary, in the case where only the spontaneous curvature
is modified, i.e., assuming σ1 = 0 and c̄0 $= 0, the budding persists as long as the

Change in spontaneous
curvature

Change in equilibrium 
density

(to O(ε))
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Complete dynamics with modified lipids

−4ηq
dhq

dt

dr±q
dt

+ iqv±q = 0

3. Theory of the instability

φq

−(σ0q
2 + κq4)hq + keq2(r+

q − r−q − 2eq2hq−
σ1

k
φq) +

κc̄0

2
q2φq

−ikq(r+
q − eq2hq−

σ1

k
φq)

−2ηqv+
q

−η2q
2v+

q

−b(v+
q − v−q )

−ikq(r−q + eq2hq)
−2ηqv−q

−η2q
2v−q

+b(v+
q − v−q )
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Complete dynamics with modified lipids
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Comparing these dynamical equations with the ones of Ref. [16] shows that
−σ1φq/k corresponds to the scalar field ε(r, t) introduced in Ref. [16] to describe
the change of the equilibrium density, which is in agreement with Eq. (11). Ref. [16]
focused on the effect of the variation of the plane-shape equilibrium density, which
corresponds to taking c̄0 = 0 here. Here, both the change of the equilibrium density
and the change of the spontaneous curvature are taken into account.

4.6. Resolution of the hydrodynamic equations

Let us define the (symmetric) average scaled density r̄q(t) = r−q + r+
q and the

(antisymmetric) differential scaled density r̂q(t) = r+
q − r−q . Eliminating v±q in

Eqs. (22)–(23) thanks to Eq. (25) and adding them together gives
∂r̄q

∂t
= − kq

η2q + 2η

(
r̄q −

σ1

k
φq

)
, (26)

while substracting them yields

∂

∂t




qhq

r̂q
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σ0q + κ̃q3

4η
−keq2

4η

−keq3

b

kq2

2b








qhq

r̂q



 +





κc̃0q2

8η
φq

σ1q2

2b
φq




,(27)

where we have assumed η2q2 " b and ηq " b, which is well verified for π/q ≈ 40 µm
corresponding to the width of the deformation observed in the experiments.

Equation (26) shows that r̄q relaxes to its equilibrium value σ1φq/k with a very
short timescale τ = −(η2q + 2η)/(kq). Indeed, with typically π/q ≈ 40 µm, and
with the parameters given above, we obtain τ ≈ 0.3 µs, which can be considered
instantaneous in our experiment.

Equation (27) can be solved by diagonalizing the square matrix involved. In our
experiments, we have q "

√
σ0/κ̃. Indeed, the tension of a vesicle is superior to about

10−7 J/m2, so
√

σ0/κ̃ ≥ 106 m−1. In this regime, the eigenvalues of the square matrix
in Eq. (27) are

γ1 ≈
kq2

2b
and γ2 ≈

σ0q

4η
. (28)

This result can be checked rapidly by noting that, in the regime where q "
√

σ0/κ̃,
the coefficient keq3/b is much smaller than all the other coefficients in the matrix,
so that the square matrix in Eq. (27) may be approximated by an upper triangular
matrix. The deformation thus evolves according to

hq(t) = Ae−γ1t + Be−γ2t +
κc̄0

2σ0
φq , (29)

where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
equation (27), which corresponds physically to the residual deformation at equilibrium.
We find that this residual deformation vanishes if c̄0 = 0, i.e., in the case where only
the plane-shape equilibrium density (and not the spontaneous curvature) is modified,
which is consistent with the previous discussions. The characteristic times γ−1

1 and γ−1
2

are both much longer than τ , the longest one being γ−1
1 , which gives a total relaxation

time of some seconds. This slow relaxation originates from the strong intermonolayer
friction, which is involved in the antisymmetric changes of the monolayer densities, as
the lipids of one monolayer move relative to the other monolayer.
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where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
equation (27), which corresponds physically to the residual deformation at equilibrium.
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the plane-shape equilibrium density (and not the spontaneous curvature) is modified,
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Comparing these dynamical equations with the ones of Ref. [16] shows that
−σ1φq/k corresponds to the scalar field ε(r, t) introduced in Ref. [16] to describe
the change of the equilibrium density, which is in agreement with Eq. (11). Ref. [16]
focused on the effect of the variation of the plane-shape equilibrium density, which
corresponds to taking c̄0 = 0 here. Here, both the change of the equilibrium density
and the change of the spontaneous curvature are taken into account.
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where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
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We find that this residual deformation vanishes if c̄0 = 0, i.e., in the case where only
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where we have assumed η2q2 " b and ηq " b, which is well verified for π/q ≈ 40 µm
corresponding to the width of the deformation observed in the experiments.

Equation (26) shows that r̄q relaxes to its equilibrium value σ1φq/k with a very
short timescale τ = −(η2q + 2η)/(kq). Indeed, with typically π/q ≈ 40 µm, and
with the parameters given above, we obtain τ ≈ 0.3 µs, which can be considered
instantaneous in our experiment.

Equation (27) can be solved by diagonalizing the square matrix involved. In our
experiments, we have q "

√
σ0/κ̃. Indeed, the tension of a vesicle is superior to about

10−7 J/m2, so
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This result can be checked rapidly by noting that, in the regime where q "
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σ0/κ̃,
the coefficient keq3/b is much smaller than all the other coefficients in the matrix,
so that the square matrix in Eq. (27) may be approximated by an upper triangular
matrix. The deformation thus evolves according to

hq(t) = Ae−γ1t + Be−γ2t +
κc̄0

2σ0
φq , (29)

where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
equation (27), which corresponds physically to the residual deformation at equilibrium.
We find that this residual deformation vanishes if c̄0 = 0, i.e., in the case where only
the plane-shape equilibrium density (and not the spontaneous curvature) is modified,
which is consistent with the previous discussions. The characteristic times γ−1

1 and γ−1
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are both much longer than τ , the longest one being γ−1
1 , which gives a total relaxation

time of some seconds. This slow relaxation originates from the strong intermonolayer
friction, which is involved in the antisymmetric changes of the monolayer densities, as
the lipids of one monolayer move relative to the other monolayer.

τ0 ≡ τ s
R " 10 ns

τ1 ≡ τa
R ≈ 5 s at qexp

τ2 ≈ 0.1− 0.5 s at qexp, σexp

Exponential relaxations 
towards equilibrium state
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Comparing these dynamical equations with the ones of Ref. [16] shows that
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where we have assumed η2q2 " b and ηq " b, which is well verified for π/q ≈ 40 µm
corresponding to the width of the deformation observed in the experiments.

Equation (26) shows that r̄q relaxes to its equilibrium value σ1φq/k with a very
short timescale τ = −(η2q + 2η)/(kq). Indeed, with typically π/q ≈ 40 µm, and
with the parameters given above, we obtain τ ≈ 0.3 µs, which can be considered
instantaneous in our experiment.

Equation (27) can be solved by diagonalizing the square matrix involved. In our
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This result can be checked rapidly by noting that, in the regime where q "
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σ0/κ̃,
the coefficient keq3/b is much smaller than all the other coefficients in the matrix,
so that the square matrix in Eq. (27) may be approximated by an upper triangular
matrix. The deformation thus evolves according to

hq(t) = Ae−γ1t + Be−γ2t +
κc̄0

2σ0
φq , (29)

where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
equation (27), which corresponds physically to the residual deformation at equilibrium.
We find that this residual deformation vanishes if c̄0 = 0, i.e., in the case where only
the plane-shape equilibrium density (and not the spontaneous curvature) is modified,
which is consistent with the previous discussions. The characteristic times γ−1

1 and γ−1
2

are both much longer than τ , the longest one being γ−1
1 , which gives a total relaxation

time of some seconds. This slow relaxation originates from the strong intermonolayer
friction, which is involved in the antisymmetric changes of the monolayer densities, as
the lipids of one monolayer move relative to the other monolayer.

(a)

(b)

(c)

(d)

(e)

Case #1 — equilibrium density only

3. Theory of the instability

c̄0 = 0 and σ1 != 0

γ2

γ1

γ0

τ0

τ2

τ1

Hypotheses:
(i) instantaneous modification,
(ii) permanent modification, 
(iii) no diffusion
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of the two monolayers. Here, both of these phenomena occur in the transient regime,
but the final state (t→∞) corresponds to a non-deformed membrane (since c̄0 = 0):
the discrepancy is finally solved by the relative sliding of the monolayers, which is the
slowest process (see Fig. 4(e)).

4.7.2. Dynamics in the case where σ1 = 0 Let us now discuss the opposite case, where
only the spontaneous curvature is modified. We take the same initial conditions as in
the previous section: r̄q(0) = r̂q(0) = hq(0) = 0. At t = 0, the preferred curvature per
lipid suddenly increases for the lipids of the external monolayer that are chemically
modified (see Fig. 5(b)). Here, solving Eq. (26) shows that r̄q remains equal to zero.
The time evolution of the membrane deformation is given by

hq(t) = φq
κc̄0

2σ0

(
1− e−γ2t

)
, (31)

which corresponds to Eq. (29) in the case where σ̄1 = 0 and with the above initial
conditions. The deformation increases exponentially with timescale γ−1

2 towards a
deformed final state, where hq = κc̄0φq/(2σ0) (see Fig. 5(c)).

Figure 5. Qualitative description of the dynamics of the instability if σ1 = 0.
Here, the modification affects the preferred curvature, but not the preferred
density on the neutral surface.

Note that the long timescale γ−1
1 involving the intermonolayer friction does not

appear in Eq. (31). Indeed, as the plane-shape equilibrium density is not modified
here, the lipids should not have to slide with respect to the other monolayer. In fact,
since the membrane is curved in the final state, a small sliding is necessary as the
equilibrium density on the membrane midsurface is curvature-dependent, contrary to
the equilibrium density on the neutral surface of each monolayer. This small sliding
is visible on Fig. 5(c). This effect can be accounted for by solving our full dynamical
equations (27), without neglecting the small coefficient keq3/b in the square matrix
(see Sec. 4.6). Indeed, solving these equations for typical values of the parameters

Case #2 — spontaneous curvature only
c̄0 != 0 and σ1 = 0

Hypotheses:
(i) instantaneous modification,
(ii) permanent modification, 
(iii) no diffusion

idem
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Comparing these dynamical equations with the ones of Ref. [16] shows that
−σ1φq/k corresponds to the scalar field ε(r, t) introduced in Ref. [16] to describe
the change of the equilibrium density, which is in agreement with Eq. (11). Ref. [16]
focused on the effect of the variation of the plane-shape equilibrium density, which
corresponds to taking c̄0 = 0 here. Here, both the change of the equilibrium density
and the change of the spontaneous curvature are taken into account.

4.6. Resolution of the hydrodynamic equations

Let us define the (symmetric) average scaled density r̄q(t) = r−q + r+
q and the

(antisymmetric) differential scaled density r̂q(t) = r+
q − r−q . Eliminating v±q in

Eqs. (22)–(23) thanks to Eq. (25) and adding them together gives
∂r̄q
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= − kq

η2q + 2η
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where we have assumed η2q2 " b and ηq " b, which is well verified for π/q ≈ 40 µm
corresponding to the width of the deformation observed in the experiments.

Equation (26) shows that r̄q relaxes to its equilibrium value σ1φq/k with a very
short timescale τ = −(η2q + 2η)/(kq). Indeed, with typically π/q ≈ 40 µm, and
with the parameters given above, we obtain τ ≈ 0.3 µs, which can be considered
instantaneous in our experiment.

Equation (27) can be solved by diagonalizing the square matrix involved. In our
experiments, we have q "

√
σ0/κ̃. Indeed, the tension of a vesicle is superior to about

10−7 J/m2, so
√

σ0/κ̃ ≥ 106 m−1. In this regime, the eigenvalues of the square matrix
in Eq. (27) are

γ1 ≈
kq2

2b
and γ2 ≈

σ0q

4η
. (28)

This result can be checked rapidly by noting that, in the regime where q "
√

σ0/κ̃,
the coefficient keq3/b is much smaller than all the other coefficients in the matrix,
so that the square matrix in Eq. (27) may be approximated by an upper triangular
matrix. The deformation thus evolves according to

hq(t) = Ae−γ1t + Be−γ2t +
κc̄0

2σ0
φq , (29)

where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
equation (27), which corresponds physically to the residual deformation at equilibrium.
We find that this residual deformation vanishes if c̄0 = 0, i.e., in the case where only
the plane-shape equilibrium density (and not the spontaneous curvature) is modified,
which is consistent with the previous discussions. The characteristic times γ−1

1 and γ−1
2

are both much longer than τ , the longest one being γ−1
1 , which gives a total relaxation

time of some seconds. This slow relaxation originates from the strong intermonolayer
friction, which is involved in the antisymmetric changes of the monolayer densities, as
the lipids of one monolayer move relative to the other monolayer.

γ2

γ1

τ2

essentially not involvedτ1
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of M. I. Angelova, N. Puff et al.

5. Non-linear development : tubule ejection
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4. Comparison with experiment

Local dynamical shape instability
N. Khalifat, N. Puff, M. I. Angelova (2008)

Giant vesicle (GUV)
Produced by electroformation,

mixture of EYPC/PS 90:10,
25°C, buffer at pH 7.4

Micropipette ∅0.3 µm
NaOH Solution 1M pH 13
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4. Comparison with experiment

✤ Instantaneous modification? Idealized. But OK for 
the relaxation stage.

✤ Permanent modification? Strong approximation. 
Difficult to quantify, depends on time-dependent OH- 
concentration field and local pH vs. pKa.

✤ Case #2 alone? Possible, but then the diffusion of 
OH- would be responsible for the relaxation towards 
the flat state.

✤ Case #1 alone? Possible! Indeed even if the lipid 
modification is permanent there is a relaxation 
toward the flat state.

✤ Probably both #1 and #2 involved. Increasing the 
effective size of the polar head both increases the 
equilibrium density (#1) and the conical shape (#2).

Adequacy? Case #1 or #2, or both?

DOH− : !150 µm in 5 s
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4.7. Qualitative picture of the dynamics in two limiting cases

In Sec. 4.4, we have shown that it is physically different to change locally the plane-
shape equilibrium density and to change locally the spontaneous curvature. Now that
we have studied the dynamics of the instability, we are going to analyze the difference
between these two effects. Although both of them occur in the generic case (see
Sec. 4.4), we are going to study the two limiting cases when only one of these changes
occurs.

Let us first introduce a schematic representation of lipids, which takes into account
the preferred area per lipid on the neutral surface, which is (by definition) independent
of the membrane curvature, and their preferred curvature (see Fig 3). The preferred
shape of a lipid is represented by a cone, superimposed on the lipid. The area per
lipid on the neutral surface (within the monolayer) is symbolized by the upper surface
of this cone, while its preferred curvature is symbolized by the angle of this cone.

Figure 3. First lipid (light grey): non-modified lipid. The length !n represents
the preferred diameter per lipid on the neutral surface, while the angle α quantifies
the preferred curvature. Second and third lipids (dark grey or brown): modified
lipids. For the second lipid, the modification affects only the preferred density
on the neutral surface, but not the preferred curvature. It is the contrary for the
third lipid.

4.7.1. Dynamics in the case where c̄0 = 0 We are first going to study the dynamics of
the relaxation in the case where c̄0 = 0. The interest of studying this theoretical case is
to show how modifying the plane-shape equilibrium density and not the spontaneous
curvature can induce a transient shape instability.

Let us consider simple initial conditions at t = 0: r̄q(0) = r̂q(0) = hq(0) = 0.
This corresponds to the idealized case where the injection of the NaOH solution is
local in time: then, following (SH1), we have φ(r, t) = 0 for t < 0 and φ(r, t) = φ(r)
for t ≥ 0. At t = 0, the preferred area per lipid suddenly increases for the lipids of the
external monolayer that are chemically modified, since we expect their extra negative
charge to increase repulsion. Thus, these modified lipids are effectively compressed
(see Fig. 4(b)).

Since the coupled dynamics of r̂q and hq is much slower than the dynamics of
r̄q, we may consider that at t = 0+, the equilibrium state r̄q(0+) = σ1φq/k has been
reached, while r̂q(0+) = 0 still holds, so r±q (0+) = 1

2σ1φq/k. This means that after
an infinitesimal time, half the compression of the lipids of the external monolayer is
relaxed. However, the flow of the lipids of the external monolayer has dragged the
lipids of the inner monolayer, because of the intermonolayer friction, thus inducing a
dilation equal to the compression in the external monolayer (see Fig. 4(c)).

#2#1
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4. Comparison with experiment

Fits of the experimental data
Dynamical membrane curvature instability controlled by intermonolayer friction 17

measured during a “pulse” experiment with Eq. (29). This equation corresponds to
the general solution of the dynamical equations of our model, and it should describe
the time evolution of the height H(t) of the deformation of the vesicle with respect to
its initial shape.

We present the analysis of several “pulse” experiments conducted on three
different GUVs (numbered 1, 2 and 3 in the following). For each experiment, we
take as an initial condition the last point where the pipette is present. If we call
H0 the height of the deformation at this time, which will be referred to as t = 0
as in our theoretical analysis, this initial condition can be written H(0) = H0. The
experimental data is thus fitted with the formula

H(t) = (H0 − C −B)e−γ1t + Be−γ2t + C , (33)

which corresponds to Eq. (29) with the above initial condition. There are thus four
free parameters in our fits: B, C, γ1 and γ2. Besides, since we expect that the diffusion
of the hydroxide ions is no longer negligible after a few seconds (see Sec. 4.2), we have
carried out the fits on identical intervals of duration 5 s for all the experiments, starting
from the end of the injection (t = 0). Thus, we eliminate the longer-term evolution
which should no longer be well-described by our model.

The best fits of the experimental data to Eq. (33) are shown in Fig. 6 for one
typical “pulse” experiment for each of the three vesicles studied. Fig. 6 shows a good
agreement between the experimental results and their best fit to Eq. (33). Thus, this
formula describes well the experimental results, which is in favor of our theoretical
model.

As can be seen on Fig. 6, the residual deformation at equilibrium is often close to
zero. This residual deformation, which corresponds to the constant term κc̄0φq/(2σ0)
in Eq. (29), is due to the change of the spontaneous curvature induced by the chemical
modification (see Sec. 4.4). Thus, if the diffusion of the hydroxide ions was much slower
than the timescales of our instability, observing a negligible residual deformation would
suggest that the change of the equilibrium density is predominant over the change of
the spontaneous curvature. However, one cannot use this argument here, because
the modified lipids may recover their initial state by reacquiring their protons as the
hydroxide ions diffuse away in the solution (see Sec. 4.2).

The best fits of the experimental results to Eq. (29) provide us with an estimate of
the time constants γ−1

1 and γ−1
2 , from which we may extract the values of the vesicle

constitutive constants b and σ0, using Eq. (28). However, the wavevector q, which
comes from our single-mode description of the instability (see Sec. 4.5), is involved in
the expressions of γ1 and γ2 (see Eq. (28)). To calculate the characteristic wavevector
q involved in each experiment, we will measure the width W of the instability, from
which we will deduce an estimate of q through q ≈ π/W .

5.2. Estimation of the width of the instability

In order to estimate the characteristic width of the instability, we have measured the
width at mid-height of the deformed zone of the vesicle. In practice, what we call
“deformed zone” is the zone where the height of the vesicle is larger in the deformed
state than in the initial state.

We have digitized the profile of the vesicle before the approach of the pipette
and in its most deformed state, i.e., when H is maximal, which occurs just after the
pipette is withdrawn. Fig. 7(a) shows the superposed pictures of a GUV in these

Fits of the relaxation with one-mode (q) theory:

with initial condition

H(t) = (H0 − C −B) e−γ1t + B e−γ2t + C

Dynamical membrane curvature instability controlled by intermonolayer friction 12

Comparing these dynamical equations with the ones of Ref. [16] shows that
−σ1φq/k corresponds to the scalar field ε(r, t) introduced in Ref. [16] to describe
the change of the equilibrium density, which is in agreement with Eq. (11). Ref. [16]
focused on the effect of the variation of the plane-shape equilibrium density, which
corresponds to taking c̄0 = 0 here. Here, both the change of the equilibrium density
and the change of the spontaneous curvature are taken into account.

4.6. Resolution of the hydrodynamic equations

Let us define the (symmetric) average scaled density r̄q(t) = r−q + r+
q and the

(antisymmetric) differential scaled density r̂q(t) = r+
q − r−q . Eliminating v±q in

Eqs. (22)–(23) thanks to Eq. (25) and adding them together gives
∂r̄q

∂t
= − kq

η2q + 2η

(
r̄q −

σ1

k
φq

)
, (26)

while substracting them yields

∂

∂t




qhq

r̂q



 = −





σ0q + κ̃q3

4η
−keq2

4η

−keq3

b

kq2

2b








qhq

r̂q



 +





κc̃0q2

8η
φq

σ1q2

2b
φq




,(27)

where we have assumed η2q2 " b and ηq " b, which is well verified for π/q ≈ 40 µm
corresponding to the width of the deformation observed in the experiments.

Equation (26) shows that r̄q relaxes to its equilibrium value σ1φq/k with a very
short timescale τ = −(η2q + 2η)/(kq). Indeed, with typically π/q ≈ 40 µm, and
with the parameters given above, we obtain τ ≈ 0.3 µs, which can be considered
instantaneous in our experiment.

Equation (27) can be solved by diagonalizing the square matrix involved. In our
experiments, we have q "

√
σ0/κ̃. Indeed, the tension of a vesicle is superior to about

10−7 J/m2, so
√

σ0/κ̃ ≥ 106 m−1. In this regime, the eigenvalues of the square matrix
in Eq. (27) are

γ1 ≈
kq2

2b
and γ2 ≈

σ0q

4η
. (28)

This result can be checked rapidly by noting that, in the regime where q "
√

σ0/κ̃,
the coefficient keq3/b is much smaller than all the other coefficients in the matrix,
so that the square matrix in Eq. (27) may be approximated by an upper triangular
matrix. The deformation thus evolves according to

hq(t) = Ae−γ1t + Be−γ2t +
κc̄0

2σ0
φq , (29)

where the constants A and B can be determined from the initial conditions on hq and
r̂q. The term κc̄0φq/(2σ0) comes from the constant solution of the inhomogeneous
equation (27), which corresponds physically to the residual deformation at equilibrium.
We find that this residual deformation vanishes if c̄0 = 0, i.e., in the case where only
the plane-shape equilibrium density (and not the spontaneous curvature) is modified,
which is consistent with the previous discussions. The characteristic times γ−1

1 and γ−1
2

are both much longer than τ , the longest one being γ−1
1 , which gives a total relaxation

time of some seconds. This slow relaxation originates from the strong intermonolayer
friction, which is involved in the antisymmetric changes of the monolayer densities, as
the lipids of one monolayer move relative to the other monolayer.
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Figure 8. Intermonolayer friction coefficient estimated from the best fit of the
experimental data to Eq. (33), for each “pulse” experiment.

fit, and therefore the estimated values of γ1 (and γ2), depend on the time interval
over which the fit is carried out. This fact can be explained by the diffusion of the
hydroxide ions, by the change in the equilibrium state which is sometimes observed
(see Sec. 5.1), and by the fact that the width of the deformation is in fact time-
dependent (see Sec. 6). We have thus varied the upper bound of this time interval
from about 3 to 7 seconds, and taken the extremal values thus obtained for γ1 (and γ2)
as the bounds of the uncertainty interval over γ1 (and γ2). This uncertainty interval is
generally larger than the one estimated by the fitting software for a given time interval.
Besides, estimating b (and σ0) also relies on our measurement of W . To determine
the uncertainty regarding W , the measurement of W described in Sec. 5.2 has been
carried out twice for each experiment, using the two most deformed states. All these
factors have been taken into account in the error bars in Fig. 8, the dominating one
coming from the choice of the time interval.

The values we find for b, i.e., b = 2− 8× 108 J.s/m4, are in good agreement with
the literature [31, 32]. Besides, we can see on Fig. 8 that the values of b extracted
from the different “pulse” experiments for each one of the three GUVs studied are
compatible given the error bars. However, the uncertainty on b is quite large, as
shown by the error bars in Fig. 8. Besides, our results seem to indicate that GUV 1
has a somewhat smaller intermonolayer coefficient friction b than GUV 2, which was
not expected, since all of our vesicles should have the same lipid composition, and b
should only depend on this composition. However, the existence of small composition
variations in the experiments cannot be totally excluded.

While the intermonolayer friction coefficient b has been deduced from γ1, which
gives the longest timescale of the relaxation (a few seconds), the vesicle tension σ0 has
to be extracted from γ2, which corresponds to a shorter timescale. The fits give values
of γ2 in the range 2 − 10 s−1, so that the timescale γ−1

2 is about 0.1 to 0.5 s. This is
very short given that an experimental point is measured every 0.3 s. Besides, studying
Eq. (30) as a function of time shows that the term e−γ2t is of significant importance
only before the maximum of H(t) is reached, which confirms that data at very small
times after the end of the injection would be needed to determine γ2 well. Thus, it
is impossible to extract precise values of σ0 from our experiments. Even if more data
points were available at short times, one might argue that the determination of σ0

would still be imprecise because at short times, the pipette is still being withdrawn,

σ0 ≈ 1− 8× 10−7 J/m2

Doubtful 
signification 

because of late 
OH- diffusion
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Figure 6. Typical examples of fits of the experimental results. Dots:
experimental data; line: best fit to Eq. (33). The dots surrounded at t = 0
correspond to the initial conditions. The lines at t = 5 s represent the upper bound
of the time interval where the fit is carried out. The insets are superposed pictures
of the initial shape of the GUV and of its most deformed shape in each experiment.
The definition of H(t) is recalled in these insets. (a) GUV 1 - Experiment number
5. (b) GUV 2 - Experiment number 8. (c) GUV 3 - Experiment number 15.

two states during a typical “pulse” experiment. The digitized profiles at these two
times have then been fitted to polynomials z = P (x) (see Fig. 7(b)). The two fitting
polynomials have then been substracted to get the deformation ∆z(x), from which it
is straightforward to measure the width at mid-height of the deformed zone W (see
Fig. 7(c)).

This estimation of W has been carried out on all of our “pulse” experiments.

Fitted amount of 
dilation (if all):

a few %.

GUV 1

GUV 2

GUV 3
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4. Comparison with experiment

Partial conclusions

✤ Good agreement between theory and experiment.

✤ Direct means of measuring intermonolayer friction coefficient   .

✤ In principle allows to discriminate between modification of 
equilibrium density        and modification of intrinsic curvature 
(alas not here because of OH- diffusion).

✤ Further (theoretical) work: (i) Evolution of the width of the 
instability by multimode Fourier analysis. (ii) Effect of the diffusion 
of modified lipids (if permanent modification).

b

δc0δρeq
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Outline

1. Review of the elastic and dynamical models of 
membranes and monolayers.

2. Experiment by M. I. Angelova, N. Puff et al.

3. Theory of the curvature instability caused by a 
local modification of the lipids of one of the 
monolayers

4. Comparison with the pH-micropipette experiment 
of M. I. Angelova, N. Puff et al.

5. Non-linear development : tubule ejection
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5. Non-linear: tubule ejection

Ejection of a tubule aiming at the pipette

Giant vesicle (GUV)
Produced by electroformation,

mixture of EYPC/PS 90:10,
25°C, buffer at pH 7.4

Micropipette ∅0.3 µm
NaOH Solution 1M pH 13
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5. Non-linear: tubule ejection

Ejection of a tubule aiming at the pipette

Giant vesicle (GUV)
Produced by electroformation,

mixture of EYPC/PS 90:10,
25°C, buffer at pH 7.4

Micropipette ∅0.3 µm
NaOH Solution 1M pH 13
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5. Non-linear: tubule ejection

Gradient of in-plane force:
‘Marangoni-like’ effect?

L(t) ∝ exp(γt)

L(t)

✤ ‘Marangoni-like’ effect:

p+
i = ∂jΣ+

ij = −k ∂i

(
r+ + ec− σ1

k
φ
)

∇ · Σ ∼ σ1∇φ

E. Evans and A. Yeung (1994)

✤ Basic dynamical model:

2πrL× σ1∇φ = λ
dL

dt

✤ Integrated normal force 
enough to draw tubule f > 2π

√
2κσ0

Tokyo ISSP/SOFT2010 Workshop



Conclusions  

✤ Direct means of measuring intermonolayer friction coefficient   .

✤ Local, dynamical instability allows to discriminate between 
modification of equilibrium density        and modification of 
intrinsic curvature      .

DIFFERENT FROM a global modification of the environment: for a 
vesicle with fixed volume, the equilibrium shape, within the ADE 
model, is fully determined by the value of quantity:

combining the preferred area difference and bilayer spontaneous 
curvature.

b

δc0

δρeq
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yields a small increase of the differential density r̂q(t) = r+
q − r−q with timescale γ−1

1 ,
and a small contribution to the deformation hq with timescale γ−1

1 . It has been checked
that this contribution to the deformation is negligible.

Note that in real experimental conditions, (SH1) cannot hold indefinitely. In our
experiment, this is mainly due to the diffusion of the hydroxide ions (see Sec. 4.2). Even
if the modification of the lipids was irreversible, the modified lipids would diffuse in
the monolayer, so the deformation would relax anyway. However, the corresponding
relaxation timescale would be much longer than the previous ones given the small
diffusion coefficient of the lipids in a membrane Dlip ≈ 1 µm2/s [33]: the modified
lipids would take about L2/Dlip ≈ 104 s to diffuse on a length L ≈ 102 µm.

4.7.3. Comparison of the two types of changes of the membrane properties Solving
the dynamical equations in the two limiting cases has confirmed that a local change of
the plane-shape equilibrium density and a local change of the spontaneous curvature
yield different dynamics. Indeed, for the length scales we consider, when only the
plane-shape equilibrium density is modified, the deformation increases rapidly before
relaxing towards a non-deformed shape with a long timescale γ−1

1 (typically of several
seconds). When only the spontaneous curvature is affected, the deformation increases
towards a stationary curved state with a short timescale γ−1

2 (typically shorter than
1 s) before relaxing slowly with a timescale of about one hour.

In contrast, when a global modification of the environment of a vesicle is
considered, studying the change of its equilibrium shape does not allow to distinguish
between a change of the spontaneous curvature and a change of the preferred area per
lipid [15]. As a matter of fact, the equilibrium shape of a vesicle with fixed volume
is fully determined within the area-difference elasticity (ADE) model by the value of
the combined quantity

∆a0 = ∆a0 +
2
α

cb
0 , (32)

where ∆a0 is the nondimensionalized preferred area difference between the two
monolayers, α a nondimensional number involving the elastic constants of the
membrane and cb

0 denotes the spontaneous curvature of the bilayer [29]. The
shape variations observed when such global modifications are performed have been
interpreted as coming from a change of the spontaneous curvature cb

0, under the
assumption that the preferred area per lipid was not modified [15, 34, 35].

Thus, the dynamical study of our instability induced by a local chemical
modification of the lipids should allow to distinguish two types of changes of the
membrane properties, which cannot be distinguished for a static global modification.
Since both of them should be involved generically (see Sec. 4.4), studying the dynamics
may enable to determine their relative importance. However, this is difficult to do
precisely in the present experiments because of the diffusion of the hydroxide ions (see
Sec. 4.2).

5. Comparison between the experiments and the model

5.1. Fits of the experimental results

In the previous section, we have exposed a theoretical model for the curvature
instability observed in our experiments. In order to compare the experimental results
to the predictions of this model, we are going to fit the the deformation height
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