MOLECULAR DYNAMICS STUDY OF LIPOSOMES WITH A NEW COARSE-GRAINED MOLECULAR MODEL

Wataru SHINODA AIST

MULTI-SCALE MODELING

CONTENTS

I. COARSE-GRAINED MOLECULAR MODELING

II. VESICLES A. MORPHOLOGY OF LIPID ASSEMBLY B. LIPID MIXING EFFECT

III. EFFECT OF CARBON NANOPARTICLES (FULLERENES) ON THE MEMBRANES

COARSE GRAINING PROCEDURE MULTI-PROPERTY FITTING

Target properties: Surface/interfacial tension, density, compressibility, Solvation free energy, transfer free energy, Radial distribution functions from all-atomic model

 $U_{\rm bond}\left(r\right) \propto -k_BT \ln\left[P\left(r\right)/r^2\right] \qquad U_{\rm angle}\left(\theta\right) \propto -k_BT \ln\left[P\left(\theta\right)/\sin\theta\right],$

Simple potential functions Intramolecular : harmonic ------ Versatility, transferability Intermolecular : Coulomb + (LJ12-4 or LJ9-6)

$$U_{\text{intra}} = \sum_{r=1}^{Bond} k_b (r - r_0)^2 + \sum_{r=1}^{Angle} k_a (\theta - \theta_0)^2,$$

$$U_{\text{LJ9-6}}(r) = \frac{27}{4} \varepsilon \left\{ \left(\frac{\sigma}{r}\right)^9 - \left(\frac{\sigma}{r}\right)^6 \right\},$$

$$U_{\text{LJ12-4}}(r) = \frac{3\sqrt{3}}{2} \varepsilon \left\{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^4 \right\}.$$
Soft Matter (2008); J. Phys. Chem. B (2010).

WHAT WE GAIN ... ?

- Mesophase structure
 - Self-assembly
 - Phase transition
 - Correct molecular partition(oil/water)
- Transferability
 - Bulk solution

- Interfaces (air/water, oil/water, solid/water etc.)
- Systematic parameterization
- Multiscale(AA-CG) / reverse mapping

ALKANE-WATER INTERACTION

interface	pair	interfacial tension		
interface	pan	exp	MD	
water/hexane	CT-W	49.96	50.0	
water/nonane		51.21	51.9	
water/dodecane	CM-W	52.14	52.9	
water/pentadecane		-	52.9	
water/heptane	CT2-W	50.30	50.1	

SOLUTE-W INTERFACTION

Hydration free energy $\rightarrow \varepsilon$

Ex) Ethylene glycol - water

Steered MD / Jarzynski or Thermodynamic Integration

C12E2 LAMELLAR PHASE

Exp: Funari & Rappe, JPCB (1997). 67wt% $C_{12}E_{2}$, 293.5 K, 1 atm CG: $A = 0.30 \text{ nm}^2$, d = 4.73 nm $A = 0.30 \text{ nm}^2$, d = 4.81 nm

Jonsson et al., 'Surfactants and Polymers in Aqueous Solution'

PHOSPHATIDYLCHOLINE(PC): LIPID BILAYER

CG-MD has carried out for 100ns in the NPT ensemble

DMPC DPPC POPC

Area per lipid: A, repeat spacing: d, area expansion modulus: K_A , bending modulus: x

	Т [К]	A [Ų]		d [Å]		K _A [dyn/cm]		х [IO ⁻²⁰ J]	
		MD	Expt.	MD	Expt.	MD	Expt.	MD	Expt.
DMPC	310	62.0	60.6	60.0		226	234	6.90	5.6,~10
DPPC	323	63.8	64	66.9	67	233		6.41	~10
POPC	303	64.6	64	66.2		296		5.68	

PHOSPHATIDYLETHANOLAMINE(PE) POPE BILAYER

	т [К]	A [Ų]		d	d [Å]		K _A [dyn/cm]		ж [IO ⁻²⁰ J]	
		MD	Expt.	MD	Expt.	MD	Expt.	MD	Expt.	
POPE	308	60.3	60	67.7		296		6.45		

Probability density of CG segments along the bilayer normal

Radial distribution function among headgroup segments

Solid lines: CG-MD Dashed lines: AA-MD

ORDER PARAMETER PROFILES

Doted line: all-atomic MD Solid line: coarse-grained MD

MAKING A VESICLE

t = 0 ns

t = 10 ns

 $t = 1 \ \mu s$

long time.....

MORPHOLOGY OF LIPID AGGREGATE (VESICLE, BICELLE)

DMPC 1512

VESICLE FORMATION (LARGER SYSTEMS)

DMPC 3500

BISTABILITY OF AGGREGATE DMPC 1512

ACKNOWLEDGMENTS

CG modeling

 Prof. Michael L Klein (Temple Univ.)
 Prof. Russell DeVane (Temple Univ.)

 *Implementation of CG model to LAMMPS

 Prof. Axel Kohlmeyer (Temple Univ.)

 *Free energy analysis

 Prof. Steven Nielsen (Univ. Texas at Dallas)
 Dr.Takenobu Nakamura (AIST)

T2K, Tsukuba Univ. Next Generation Supercomputer Project CREST-JST

