

Vesicles and Red Blood Cells in Microcapillary Flows

Gerhard Gompper and Hiroshi Noguchi*

Institut für Festkörperforschung, and Institute for Advanced Simulations,

Forschungszentrum Jülich, Germany

* Institute for Solid State Physics, University of Tokyo, Japan

Soft Matter Hydrodynamics

Cells and vesicles in flow:

• Red blood cells in microvessels:

Diseases such as diabetes reduce deformability of red blood cells!

Soft Matter Hydrodynamics

Example: Flow behavior of malaria-infected red blood cells in microchannels Just after infection:

Late stage:

Diameter: 8 μ m

6 μ m

4 μ m

 $2~\mu m$

J.P. Shelby et al., Proc. Natl. Acad. Sci. 100 (2003)

Mesoscale Flow Simulations

Complex fluids: length- and time-scale gap between

- atomistic scale of solvent
- mesoscopic scale of dispersed particles (colloids, polymers, membranes)
- $\longrightarrow {\bf Mesoscale \ Simulation \ Techniques}$

Basic idea:

- drastically simplify dynamics on molecular scale
- respect conservation laws for mass, momentum, energy

Examples:

- Lattice Boltzmann Method (LBM)
- Dissipative Particle Dynamics (DPD)
- Multi-Particle-Collision Dynamics (MPC)

Alternative approach: Hydrodynamic interactions via Oseen tensor

Mesoscale Hydrodynamics Simulations

Multi-Particle-Collision Dynamics (MPC)

A. Malevanets and R. Kapral, J. Chem. Phys. 110 (1999)

A. Malevanets and R. Kapral, J. Chem. Phys. $\mathbf{112}$ (2000)

- coarse grained fluid
- point particles
- off-lattice method
- collisions inside "cells"
- thermal fluctuations

Multi-Particle Collision Dynamics (MPC)

Flow dynamics: Two step process

Streaming

- ballistic motion
 - $\mathbf{r}_i(t+h) = \mathbf{r}_i(t) + \mathbf{v}_i(t)h$

Multi-Particle Collision Dynamics (MPC)

Flow dynamics: Two step process

Streaming

Collision

• ballistic motion $\mathbf{r}_i(t+h) = \mathbf{r}_i(t) + \mathbf{v}_i(t)h$

- mean velocity per cell $\bar{\mathbf{v}}_i(t) = \frac{1}{n_i} \sum_{j \in C_i}^{n_i} \mathbf{v}_j(t)$
- rotation of relative velocity by angle α $\mathbf{v}'_i = \bar{\mathbf{v}}_i + \mathbf{D}(\alpha)(\mathbf{v}_i - \bar{\mathbf{v}}_i)$

Mesoscale Flow Simulations: MPC

- Lattice of collision cells: breakdown of Galilean invariance
- Restore Galilean invariance exactly: random shifts of cell lattice

۰.

T. Ihle and D.M. Kroll, Phys. Rev. E 63 (2001)

Mesoscale Flow Simulations: MPC

- Lattice of collision cells: breakdown of Galilean invariance
- Restore Galilean invariance exactly: random shifts of cell lattice

.

Low-Reynolds-Number Hydrodynamics

- Reynolds number $Re = v_{\rm max}L/\nu \sim$ inertia forces / friction forces For soft matter systems with characteristic length scales of μm : $Re \simeq 10^{-3}$
- Schmidt number $Sc = \nu/D \sim$ momentum transp. / mass transp. Gases: $Sc \simeq 1$, liquids: $Sc \simeq 10^3$

M. Ripoll, K. Mussawisade, R.G. Winkler and G. Gompper, Europhys. Lett. 68 (2004)

Other MPC Methods

• Anderson thermostat (MPC-AT-a):

Choose new relative velocities from Maxwell-Boltzmann distribution

- Angular-momentum conservation (MPC-AT+a): Modify collision rule to conserve angular momentum
- Importance of angular-momentum conservation:

Rotating fluid drop with different viscosity in circular Couette flow

H. Noguchi, N. Kikuchi, G. Gompper, Europhys. Lett. 78 (2007); I.O. Götze, H. Noguchi, G. Gompper, Phys. Rev. E 76 (2007)

Hydrodynamics of Membranes and Vesicles

Equilibrium Vesicle Shapes

Minimize curvature energy for fixed area $A = 4\pi R_0^2$ and reduced volume $V^* = V/V_0$, where $V_0 = 4\pi R_0^3/3$:

stomatocyte

discoctyte

prolate

U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A 44 (1991)

Simulations of Membranes

Modelling of membranes on different length scales:

atomistic

coarse-grained

solvent-free

triangulated

Simulations of Membranes

Dynamically triangulated surfaces

Hard-core diameter σ Tether length L: $\sigma < L < \sqrt{3} \sigma$

--> self-avoidance

Dynamic triangulation:

G. Gompper & D.M. Kroll (2004)

Membrane Hydrodynamics

Interaction between membrane and fluid:

• Streaming step:

bounce-back scattering of solvent particles on triangles

• Collision step:

membrane vertices are included in MPC collisions

implies impenetrable membrane with no-slip boundary conditions.

H. Noguchi and G. Gompper, Phys. Rev. Lett. 93 (2004); Phys. Rev. E 72 (2005)

Membrane Hydrodynamics

Vesicle Dynamics in Shear Flow

Vesicles in Shear Flow

Parameter: shear rate $\dot{\gamma}$

Variables:

- \bullet Reduced volume V^{\ast}
- Shape
- Membrane viscosity η_{mb}
- Internal viscosity η_{in}

Behavior in shear flow:

- Tank-treading
- Tumbling
- Swinging (vacillating-breathing, trembling)
- Shape transformations

high viscosity

Swinging, Vacillating-breathing, Trembling

$$\dot{\gamma} = 1.8 s^{-1}$$
$$\dot{\gamma} = 1.7 s^{-1}$$

Transition fom tumbling to swinging with increasing shear rate $\dot{\gamma}$

V. Kantsler and V. Steinberg, Phys. Rev. Lett. **96** (2006)

Theory: C. Misbah, Phys. Rev. Lett. 96 (2006); H. Noguchi and G. Gompper, Phys. Rev. Lett. 98 (2007); P.M. Vlahovska and R.S. Garcia, Phys. Rev. E 78 (2007); V.V. Lebedev et al., Phys. Rev. Lett. 99 (2007) ...

Swinging of Fluid Vesicles: Theory

Shape dynamics:

H. Noguchi and G. Gompper, Phys. Rev. Lett. 98 (2007)

Phase diagram:

Vesicles with Viscosity Contrast in Bulk

- Two-dimensional vesicles in shear flow
- Employ MPC-AT+a (with angular momentum conservation)
- Change viscosity contrast λ by varying mass of fluid particles

S. Messlinger, B. Schmidt, H. Noguchi and G. Gompper, Phys. Rev. E 80 (2009)

Vesicles with Viscosity Contrast near Wall

Vesicle in gravitational field near wall:

(a)

 $\lambda = 1$:

 $-2 \cdot \cdots$

S. Messlinger, B. Schmidt, H. Noguchi and G. Gompper, Phys. Rev. E 80 (2009)

Membrane Hydrodynamics

Vesicle and Cells in Capillary Flow

Capillary Flow: Fluid Vesicles

- small flow velocities: vesicle axis perpendicular to capillary axis \longrightarrow no axial symmetry!
- discocyte-to-prolate transition with increasing flow

H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. USA 102 (2005)

Capillary Flow: Red Blood Cells

- \bullet Spectrin network induces shear elasticity μ of composite membrane
- Elastic parameters: $\kappa/k_BT = 50$, $\mu R_0^2/k_BT = 5000$

Capillary Flow: Elastic Vesicles

• curvature and shear elasticity $(\kappa = 20 k_B T, \mu = 110 k_B T/R_0^2)$

Elastic vesicle:

• model for red blood cells

Capillary Flow: Elastic Vesicles

• curvature and shear elasticity

Elastic vesicle:

• model for red blood cells

Tsukada et al., Microvasc. Res. 61 (2001)

Capillary Flow: Red Blood Cells

Shear elasticity suppresses prolate shapes (large deformations)

Flow velocity at discocyte-to-parachute transition

bending rigidity

Implies for RBCs: $v_{trans} \simeq 0.2mm/s$ for $R_{cap} = 4.6 \mu m$

Physiological conditions: Hematocrit (volume fraction of RBCs) H = 0.45Lower in narrow capillaries $H_T = 0.1...0.2$

Therefore: Hydrodynamic interactions between RBCs very important

Note: No direct attractive interactions considered!

Low hematocrit H_T :

- Single vesicles more deformed \rightarrow move faster
- Effective hydrodynamic attraction stabilizes clusters
- J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. 106 (2009)

Low hematocrit H_T :

Positional correlation function

Probability for cluster size n_{cl}

Clustering tendency increases with increasing flow velocity

Low hematocrit H_T :

Clustering tendency increases with increasing flow velocity

High hematocrit H_T :

disordered discocyte

aligned parachute

J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. 106 (2009)

High hematocrit H_T :

disordered discocyte

aligned parachute

zig-zag

Skalak, Science (1969)

Phase diagram:

Hematocrit $H_T = 0.28/L_{ves}^*$

Transition to zig-zag phase despite higher flow resistance than alignedparachute phase! Vesicle motion through zig-zag shaped channel ($L_x = 100 \mu m$): time-dependent flow

Vesicle motion through zig-zag shaped channel ($L_x = 100 \mu m$): Z∱ time-dependent flow ≯ X

H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, EPL 89 (2010)

Vesicles in Structured Channels

Large reduced volume V^* :

- Fast flows: Symmetric shape oscillations
- Slow flows: Orientational oscillations

Smaller reduced volume V^* :

- Symmetric double tail
- Asymmetric single tail

- Mesoscale simulation techniques are powerful tool to bridge the length- and time-scale gap in complex fluids
- Multi-particle-collision dynamics well suited for hydrodynamics of embedded particles: colloids, polymers, vesicles, RBCs
- Vesicles in shear flow: tank-treading, tumbling, swinging, lift force
- Red blood cells in capillary flow: shear elasticity implies parachute shapes, hydrodynamic clustering and alignment
- Vesicles in structured channels: single- and double-tailed shapes

Review: G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)