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Outline

  Motivation
  Hybrid CG modeling (ongoing, conceptual)
  Enhanced sampling (quick)
  Conclusions/outlook
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Using/adapting dynamic mesoscopic methodology for 
block copolymers to simulate life-mimicking (biomematic) 
structures and structure formation

•  Veterinarian
•  Biologist
•  Physicist
•  Mathematician ?

Motivation
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reduction

“Cell membrane dynamics essentially lipidic” (100+ simulation papers)

Motivation

Aim: Realistic computational modeling of liposome 
formation, dynamics and (assisted) fusion

VW Project 2009-2012 ‘Multiscale hybrid modeling of 
(bio)membranes’ (Schmid, Zvelindovsky, Böker, AS)



Japan, 2010
Motivation: intriguing experiments in Leiden

Vesicle fusion induced by coiled-coil motif (short peptide fragments)

Hana Robson Marsden et al, A reduced SNARE model for membrane fusion, 
Angew. Chem. 2330–2333, 2009.
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General issues: length and time scales

slow 

collapse growth 
(coalescence) 

micellar  
growth 

fast fast 

Ostwald ripening 
& vesicle fusion 

and fission 
closure 

extremely slow fast J. Leng, S. Egelhaaf, M. Cates 
(2002)  Europhys. Lett. 

Nm and mm: model for complete 
vesicle and/or vesicle fusion requires 
considerable coarse graining

Efficient, realistic, dynamic
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The DNA of simulation
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Mesoscale methodsAtomistic 

Simulation
Methods

Semi-empirical
methods

Ab initio
methods

Monte Carlo
molecular dynamics

tight-binding
MNDO, INDO/S

Methods
Based on SDSC Blue Horizon (SP3)
512-1024 processors
1.728 Tflops peak performance
CPU time = 1 week / processor

Statistical physics

Specific, detail

Thermodynamics

Average, collective
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Vesicle formation and fusion (2005)

20% A2B2 in a selective bad solvent 

METHOD: DDFT= mean-field 
SCFT+diffusion 

AS., Zvelindovsky A.V. Macromolecules 38 7502-7513 (2005). 

Movie 

200 nm 

100 nm 



Japan, 2010
Issues

Beyond block copolymers: 

  How to realistically represent lipids? 
  Increasing complexity? 

  ‘Floppy’ Gaussian chains: onion vesicles 
  Mean-field: concentrated systems 
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Hybrid particle-field model 

Aim: flexibility, efficient and 
realistic liposome simulation

(ongoing work)
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DDFT: pattern formation dynamics in concentrated BCP

 (quasi)equilibrium behavior, AB, ABC, branced
 Phase transition under external fields (confinement, shear, E, etc)

€ 

F[ρI ] = F ideal[ρI ,UI ]+ F
cohesive[ρI ]+

1
2
κH ρI

I
∑
 

 
 

 

 
 

V
∫

2

Entropic: Gaussian chains in self-
consistent field U

Enthalpic: mean-field interactions (FH)

Pressure term, incompressible

local kinetic model processing conditions

noise

€ 

dρI (r)
dt

= M∇ ⋅ ρI (r)∇
δF[ρ,U]
δρI

(r) + ..........+ηI (r)
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Experiment 

Calculation 

Synergetic validation: flat polymeric ‘membrane’

nucleation annihilation splitting

High-speed SFM measurements of membrane dynamics: ~ sec ptf

€ 

Δt sim ~ sec

Structural transition due to thickness reduction : top view
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Different representations of constituents

chemical fragment
spring

solvent

Variable composition

DDFT: Underlying harmonic spring, calculations and interactions 
field-based

Particles (DPD): Harmonic spring, angle and torsion 
potentials, soft core repulsive pair potentials 

€ 

f repulsive

distance

€ 

rc € 

aij = aij
0 + Δaij

€ 

aij
liquid incompressibility
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Hybrid model

  

€ 

cIk
I ,k
∑ K( r − rk )ρI (

 r )
V
∫ d r 

  

€ 

F hybrid [ρI ,
 r k ] = F DDFT [ρI ]+ U particles[ r k ]+ F coupling[ρI ,

 r k ]

Diffusion, timescales are more or less comparative (coupled update)

€ 

∂rk = Dk[ fk
conserv − cIkK(r − rk )∇ρI (r)dr

I
∑

V
∫ ]∂t + rk

random (t)

  

€ 

dρI (
 r )

dt
= M∇ ⋅ ρI (

 r )∇[µDDFT (r) + cIkK(r − rk )
k
∑ ]+ηI

particles

fields
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Physical interpretation

r

ρΙ(r)

Positive c

Coupling force: away from high density field values
Coupling chemical potential: field diffuses away from regions with many particles

Advantage is possibility to mix different representations on CG level for 
same or different constituents: sparse (particles) + abundant (field)

Mapping: besides FH parameter (χ)/interaction strengths (a) we need 
compressibility (    ) and coupling (       ).

€ 

κ

€ 

cIk
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Mapping particles and fields: binary system

Determine ‘free’ parameters by requiring thermodynamic consistency for 
single bead solvent in both representations. 

€ 

κ : match either pressure or 
excess chemical potential

€ 

cIk : use field partitioning to 
determine FH χ and Groot 
& Warren to convert to 
soft-core potential strength 

Note: both particles and fields adapt dynamically

€ 

→ cIk = cIk (a)
€ 

κ

€ 

cIk
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Hybrid vs DPD lipid membrane simulation

Use these values and realistic DPD lipid parameters

DPD, Shillcock and Lipowky 2002
(realistic)

Hybrid calculation where the solvent is 
replaced by a field, with the same S&L

 parameters for the lipid

(163)

solvent field

solvent field

solvent particles

solvent particles
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Hybrid membrane simulation

Averaging over many initial condition and time frames
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Additional benefits: implicit solvent

Preliminary: analytical equilibrium solution for solvent (field) can be 
converted into an additional potential in particle description

€ 

V → A

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E, 011506 (2005).

  

€ 

( r k
sol , r k

lipid ) mapping →   (ρsol ,
 r k

lipid ) analytic →   
 r k

lipid

CGMD, implicit solvent 
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Vesicle formation pathway following quench

Solution? S-QN: accelerating collective modes

Diffusion is patient (DPD – O(20000))
Experiments: slow process!

solvent field

300000
200000

323



Japan, 2010

Enhanced sampling: 

Accelerating collective 
modes in a CG particle 

description
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Stochastic Quasi-Newton method

Δxk = xk+1 − xk = −α k∇Φ

Δxk = xk+1 − xk = −α kH
−1∇Φ

Steepest descent

Newton method

Quasi-Newton method Bk → H −1

€ 

Bk

Δxk = −M∇Φ(xk )Δt + 2MkBTΔtΔWk

M(x) √M(x)

Fluctuation-dissipation

€ 

M(x) = (∇2Φ(x))−1
Curvature-dependent mobility

Optimization in numerical mathemetics (objective function)

Diffusion in statistical mechanics (potential function)

+ spurious drift
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Stochastic Quasi-Newton method

€ 

Φ(x) ~ k
2
x 2

€ 

M = k−1 = (∇2Φ)−1

drift term noise term ~ k-1

k<1 k>1

Stability analysis:                independent of k

Sparse sampling Dense sampling

€ 

dx = −kxdt + 2kBTdW (t)

€ 

dx = −xdt + 2 kBT
k
dW (t)

€ 

M =1for

for

€ 

Δtmax

Illustration: 1-D Harmonic oscillator

slow modes fast modes
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Stochastic Quasi-Newton method

approximate of H (xk )
−1

New factorized update method (equivalent to DFP) for Mk+1:

•  Hereditary: minimal
•  If M0 positive definite, Mk+1 positive definite (√M exists!)
•  Mk+1 is approximate of inverse Hessian (secant condition)
•  Efficiency:                                      update Jk+1                                

€ 

M(x) = Mk (xk ) = Mk (xk,...,x0)

€ 

Mk+1 −Mk F

€ 

Mk+1 = Jk+1Jk+1
T

€ 

Mk → H−
Rouse chain

€ 

Δt SQN >> Δt LD
Additional costs per timestep but
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Stochastic Quasi-Newton method

Analysis for quadratic potential (Rouse chain): all modes evolve 
equally fast (real-space Fourier acceleration)

Φ =
1
2
Φbond +

1
2
Φbending +Φdihedral +ΦLJ

Bead=amino acid (either neutral, 
hydrophobic or hydrophilic)

Minimal model of a protein

Conclusions (S-QN):
 Enhanced sampling of energy landscape (many inherent states)
 Hierarchical optimization (bond length, angles, torsions, non bonded)

Generic S-QN method: accelerated but no ’realistic’ dynamics
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Conclusions and outlook

Conclusions:
 New hybrid model for particle/field mixtures
 Reuse DPD parameters for CG lipids  
 Possibility of implicit solvent (analytic)
 Additional sparse constituents can be added as CG particle chains
 New S-QN method to speed up formation kinetics

To do:
 Validate membrane material parameters in hybrid model
 Concise derivation of implicit solvent
 Implementation and parameterization of SNARE-like CG proteins

Outlook:
 Large scale simulations
 Vesicle fusion
 …
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…

Thank you for your 
attention

Questions?
(a.sevink@chem.leidenuniv.nl)



Japan, 2010



Principles of SQN 29

Minimal model of a protein (3D): sampling efficiency 

29Principles of SQN

Standard LD (SLD)

Our FSU method ‘native state’

€ 

T > Tcollapse

One basin

Several basins



Principles of SQN 30

Minimal model of a protein (3D): mode analysis 

SLD FSU

30Principles of SQN

€ 

T << T fold

LB8B(NL)2NBLB3LB Native state: left, turn and right sub-domains

native

Φ =
1
2
Φbond +

1
2
Φbending +Φdihedral +ΦLJ

Equilibration order: bonds, angles, torsions, LJ (even for reduced spring constants)
-> ‘soft’ RATTLE/SHAKE/LINCS

€ 

χ

€ 

χ


