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Outline


  Motivation

  Hybrid CG modeling (ongoing, conceptual)

  Enhanced sampling (quick)

  Conclusions/outlook
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Using/adapting dynamic mesoscopic methodology for 
block copolymers to simulate life-mimicking (biomematic) 
structures and structure formation


•  Veterinarian

•  Biologist

•  Physicist

•  Mathematician ?


Motivation
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reduction


“Cell membrane dynamics essentially lipidic” (100+ simulation papers)


Motivation


Aim: Realistic computational modeling of liposome 
formation, dynamics and (assisted) fusion


VW Project 2009-2012 ‘Multiscale hybrid modeling of 
(bio)membranes’ (Schmid, Zvelindovsky, Böker, AS)
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Motivation: intriguing experiments in Leiden


Vesicle fusion induced by coiled-coil motif (short peptide fragments)


Hana Robson Marsden et al, A reduced SNARE model for membrane fusion, 
Angew. Chem. 2330–2333, 2009.
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General issues: length and time scales


slow 

collapse growth 
(coalescence) 

micellar  
growth 

fast fast 

Ostwald ripening 
& vesicle fusion 

and fission 
closure 

extremely slow fast J. Leng, S. Egelhaaf, M. Cates 
(2002)  Europhys. Lett. 

Nm and mm: model for complete 
vesicle and/or vesicle fusion requires 
considerable coarse graining


Efficient, realistic, dynamic
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The DNA of simulation
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Mesoscale methods
Atomistic 

Simulation
Methods


Semi-empirical

methods


Ab initio

methods


Monte Carlo

molecular dynamics


tight-binding

MNDO, INDO/S


Methods

Based on SDSC Blue Horizon (SP3)

512-1024 processors

1.728 Tflops peak performance

CPU time = 1 week / processor


Statistical physics


Specific, detail


Thermodynamics


Average, collective
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Vesicle formation and fusion (2005)


20% A2B2 in a selective bad solvent 

METHOD: DDFT= mean-field 
SCFT+diffusion 

AS., Zvelindovsky A.V. Macromolecules 38 7502-7513 (2005). 

Movie 

200 nm 

100 nm 
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Issues


Beyond block copolymers: 

  How to realistically represent lipids? 
  Increasing complexity? 

  ‘Floppy’ Gaussian chains: onion vesicles 
  Mean-field: concentrated systems 
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Hybrid particle-field model 


Aim: flexibility, efficient and 
realistic liposome simulation


(ongoing work)




Japan, 2010

DDFT: pattern formation dynamics in concentrated BCP


 (quasi)equilibrium behavior, AB, ABC, branced

 Phase transition under external fields (confinement, shear, E, etc)


€ 

F[ρI ] = F ideal[ρI ,UI ]+ F
cohesive[ρI ]+

1
2
κH ρI

I
∑
 

 
 

 

 
 

V
∫

2

Entropic: Gaussian chains in self-
consistent field U


Enthalpic: mean-field interactions (FH)


Pressure term, incompressible


local kinetic model
 processing conditions


noise


€ 

dρI (r)
dt

= M∇ ⋅ ρI (r)∇
δF[ρ,U]
δρI

(r) + ..........+ηI (r)
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Experiment 

Calculation 

Synergetic validation: flat polymeric ‘membrane’


nucleation
 annihilation
 splitting


High-speed SFM measurements of membrane dynamics: ~ sec ptf


€ 

Δt sim ~ sec

Structural transition due to thickness reduction : top view
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Different representations of constituents


chemical fragment

spring


solvent


Variable composition


DDFT: Underlying harmonic spring, calculations and interactions 
field-based


Particles (DPD): Harmonic spring, angle and torsion 
potentials, soft core repulsive pair potentials 


€ 

f repulsive

distance


€ 

rc € 

aij = aij
0 + Δaij

€ 

aij
liquid incompressibility
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Hybrid model


  

€ 

cIk
I ,k
∑ K( r − rk )ρI (

 r )
V
∫ d r 

  

€ 

F hybrid [ρI ,
 r k ] = F DDFT [ρI ]+ U particles[ r k ]+ F coupling[ρI ,

 r k ]

Diffusion, timescales are more or less comparative (coupled update)


€ 

∂rk = Dk[ fk
conserv − cIkK(r − rk )∇ρI (r)dr

I
∑

V
∫ ]∂t + rk

random (t)

  

€ 

dρI (
 r )

dt
= M∇ ⋅ ρI (

 r )∇[µDDFT (r) + cIkK(r − rk )
k
∑ ]+ηI

particles


fields
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Physical interpretation


r


ρΙ(r)


Positive c


Coupling force: away from high density field values

Coupling chemical potential: field diffuses away from regions with many particles


Advantage is possibility to mix different representations on CG level for 
same or different constituents: sparse (particles) + abundant (field)


Mapping: besides FH parameter (χ)/interaction strengths (a) we need 
compressibility (    ) and coupling (       ).


€ 

κ

€ 

cIk
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Mapping particles and fields: binary system


Determine ‘free’ parameters by requiring thermodynamic consistency for 
single bead solvent in both representations. 


€ 

κ : match either pressure or 
excess chemical potential


€ 

cIk : use field partitioning to 
determine FH χ and Groot 
& Warren to convert to 
soft-core potential strength 


Note: both particles and fields adapt dynamically


€ 

→ cIk = cIk (a)
€ 

κ

€ 

cIk
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Hybrid vs DPD lipid membrane simulation


Use these values and realistic DPD lipid parameters


DPD, Shillcock and Lipowky 2002

(realistic)


Hybrid calculation where the solvent is 
replaced by a field, with the same S&L


 parameters for the lipid


(163)


solvent field


solvent field


solvent particles


solvent particles
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Hybrid membrane simulation


Averaging over many initial condition and time frames
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Additional benefits: implicit solvent


Preliminary: analytical equilibrium solution for solvent (field) can be 
converted into an additional potential in particle description


€ 

V → A

I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E, 011506 (2005).


  

€ 

( r k
sol , r k

lipid ) mapping →   (ρsol ,
 r k

lipid ) analytic →   
 r k

lipid

CGMD, implicit solvent 
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Vesicle formation pathway following quench


Solution? S-QN: accelerating collective modes


Diffusion is patient (DPD – O(20000))

Experiments: slow process!


solvent field


300000

200000


323
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Enhanced sampling: 


Accelerating collective 
modes in a CG particle 

description
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Stochastic Quasi-Newton method


Δxk = xk+1 − xk = −α k∇Φ

Δxk = xk+1 − xk = −α kH
−1∇Φ

Steepest descent


Newton method


Quasi-Newton method
 Bk → H −1

€ 

Bk

Δxk = −M∇Φ(xk )Δt + 2MkBTΔtΔWk

M(x)
 √M(x)


Fluctuation-dissipation


€ 

M(x) = (∇2Φ(x))−1
Curvature-dependent mobility


Optimization in numerical mathemetics (objective function)


Diffusion in statistical mechanics (potential function)


+ spurious drift
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Stochastic Quasi-Newton method


€ 

Φ(x) ~ k
2
x 2

€ 

M = k−1 = (∇2Φ)−1

drift term
 noise term ~ k-1


k<1
 k>1


Stability analysis:                independent of k


Sparse sampling
 Dense sampling


€ 

dx = −kxdt + 2kBTdW (t)

€ 

dx = −xdt + 2 kBT
k
dW (t)

€ 

M =1for


for


€ 

Δtmax

Illustration: 1-D Harmonic oscillator


slow modes
 fast modes
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Stochastic Quasi-Newton method


approximate of 
H (xk )
−1

New factorized update method (equivalent to DFP) for Mk+1:


•  Hereditary: minimal

•  If M0 positive definite, Mk+1 positive definite (√M exists!)

•  Mk+1 is approximate of inverse Hessian (secant condition)

•  Efficiency:                                      update Jk+1                                


€ 

M(x) = Mk (xk ) = Mk (xk,...,x0)

€ 

Mk+1 −Mk F

€ 

Mk+1 = Jk+1Jk+1
T

€ 

Mk → H−
Rouse chain


€ 

Δt SQN >> Δt LD
Additional costs per timestep but
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Stochastic Quasi-Newton method


Analysis for quadratic potential (Rouse chain): all modes evolve 
equally fast (real-space Fourier acceleration)


Φ =
1
2
Φbond +

1
2
Φbending +Φdihedral +ΦLJ

Bead=amino acid (either neutral, 
hydrophobic or hydrophilic)


Minimal model of a protein


Conclusions (S-QN):

 Enhanced sampling of energy landscape (many inherent states)

 Hierarchical optimization (bond length, angles, torsions, non bonded)


Generic S-QN method: accelerated but no ’realistic’ dynamics
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Conclusions and outlook


Conclusions:

 New hybrid model for particle/field mixtures

 Reuse DPD parameters for CG lipids  

 Possibility of implicit solvent (analytic)

 Additional sparse constituents can be added as CG particle chains

 New S-QN method to speed up formation kinetics


To do:

 Validate membrane material parameters in hybrid model

 Concise derivation of implicit solvent

 Implementation and parameterization of SNARE-like CG proteins


Outlook:

 Large scale simulations

 Vesicle fusion

 …
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…


Thank you for your 
attention


Questions?

(a.sevink@chem.leidenuniv.nl)
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Principles of SQN
 29


Minimal model of a protein (3D): sampling efficiency 


29
Principles of SQN


Standard LD (SLD)


Our FSU method
 ‘native state’


€ 

T > Tcollapse

One basin


Several basins
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Minimal model of a protein (3D): mode analysis 


SLD
 FSU


30
Principles of SQN


€ 

T << T fold

LB8B(NL)2NBLB3LB
 Native state: left, turn and right sub-domains


native


Φ =
1
2
Φbond +

1
2
Φbending +Φdihedral +ΦLJ

Equilibration order: bonds, angles, torsions, LJ (even for reduced spring constants)

-> ‘soft’ RATTLE/SHAKE/LINCS


€ 

χ

€ 

χ


